Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot...
Ausführliche Beschreibung
Autor*in: |
Coroianu, Lucian [verfasserIn] Gagolewski, Marek [verfasserIn] Grzegorzewski, Przemyslaw [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Approximation of fuzzy numbers |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 23(2019), 19 vom: 14. Feb., Seite 9491-9505 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2019 ; number:19 ; day:14 ; month:02 ; pages:9491-9505 |
Links: |
---|
DOI / URN: |
10.1007/s00500-019-03800-2 |
---|
Katalog-ID: |
SPR006507263 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006507263 | ||
003 | DE-627 | ||
005 | 20201124002912.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-019-03800-2 |2 doi | |
035 | |a (DE-627)SPR006507263 | ||
035 | |a (SPR)s00500-019-03800-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Coroianu, Lucian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. | ||
650 | 4 | |a Approximation of fuzzy numbers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Calculations on fuzzy numbers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Characteristics of fuzzy numbers |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy number |7 (dpeaa)DE-He213 | |
650 | 4 | |a Piecewise linear approximation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gagolewski, Marek |e verfasserin |4 aut | |
700 | 1 | |a Grzegorzewski, Przemyslaw |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 23(2019), 19 vom: 14. Feb., Seite 9491-9505 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2019 |g number:19 |g day:14 |g month:02 |g pages:9491-9505 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-019-03800-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 23 |j 2019 |e 19 |b 14 |c 02 |h 9491-9505 |
author_variant |
l c lc m g mg p g pg |
---|---|
matchkey_str |
coroianuluciangagolewskimarekgrzegorzews:2019----:icwslnaapoiainfuznmesloihsrtmtcprtosn |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00500-019-03800-2 doi (DE-627)SPR006507263 (SPR)s00500-019-03800-2-e DE-627 ger DE-627 rakwb eng Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers (dpeaa)DE-He213 Calculations on fuzzy numbers (dpeaa)DE-He213 Characteristics of fuzzy numbers (dpeaa)DE-He213 Fuzzy number (dpeaa)DE-He213 Piecewise linear approximation (dpeaa)DE-He213 Gagolewski, Marek verfasserin aut Grzegorzewski, Przemyslaw verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)SPR006469531 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://dx.doi.org/10.1007/s00500-019-03800-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 19 14 02 9491-9505 |
spelling |
10.1007/s00500-019-03800-2 doi (DE-627)SPR006507263 (SPR)s00500-019-03800-2-e DE-627 ger DE-627 rakwb eng Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers (dpeaa)DE-He213 Calculations on fuzzy numbers (dpeaa)DE-He213 Characteristics of fuzzy numbers (dpeaa)DE-He213 Fuzzy number (dpeaa)DE-He213 Piecewise linear approximation (dpeaa)DE-He213 Gagolewski, Marek verfasserin aut Grzegorzewski, Przemyslaw verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)SPR006469531 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://dx.doi.org/10.1007/s00500-019-03800-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 19 14 02 9491-9505 |
allfields_unstemmed |
10.1007/s00500-019-03800-2 doi (DE-627)SPR006507263 (SPR)s00500-019-03800-2-e DE-627 ger DE-627 rakwb eng Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers (dpeaa)DE-He213 Calculations on fuzzy numbers (dpeaa)DE-He213 Characteristics of fuzzy numbers (dpeaa)DE-He213 Fuzzy number (dpeaa)DE-He213 Piecewise linear approximation (dpeaa)DE-He213 Gagolewski, Marek verfasserin aut Grzegorzewski, Przemyslaw verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)SPR006469531 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://dx.doi.org/10.1007/s00500-019-03800-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 19 14 02 9491-9505 |
allfieldsGer |
10.1007/s00500-019-03800-2 doi (DE-627)SPR006507263 (SPR)s00500-019-03800-2-e DE-627 ger DE-627 rakwb eng Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers (dpeaa)DE-He213 Calculations on fuzzy numbers (dpeaa)DE-He213 Characteristics of fuzzy numbers (dpeaa)DE-He213 Fuzzy number (dpeaa)DE-He213 Piecewise linear approximation (dpeaa)DE-He213 Gagolewski, Marek verfasserin aut Grzegorzewski, Przemyslaw verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)SPR006469531 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://dx.doi.org/10.1007/s00500-019-03800-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 19 14 02 9491-9505 |
allfieldsSound |
10.1007/s00500-019-03800-2 doi (DE-627)SPR006507263 (SPR)s00500-019-03800-2-e DE-627 ger DE-627 rakwb eng Coroianu, Lucian verfasserin aut Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. Approximation of fuzzy numbers (dpeaa)DE-He213 Calculations on fuzzy numbers (dpeaa)DE-He213 Characteristics of fuzzy numbers (dpeaa)DE-He213 Fuzzy number (dpeaa)DE-He213 Piecewise linear approximation (dpeaa)DE-He213 Gagolewski, Marek verfasserin aut Grzegorzewski, Przemyslaw verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 19 vom: 14. Feb., Seite 9491-9505 (DE-627)SPR006469531 nnns volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 https://dx.doi.org/10.1007/s00500-019-03800-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 19 14 02 9491-9505 |
language |
English |
source |
Enthalten in Soft Computing 23(2019), 19 vom: 14. Feb., Seite 9491-9505 volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 |
sourceStr |
Enthalten in Soft Computing 23(2019), 19 vom: 14. Feb., Seite 9491-9505 volume:23 year:2019 number:19 day:14 month:02 pages:9491-9505 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Approximation of fuzzy numbers Calculations on fuzzy numbers Characteristics of fuzzy numbers Fuzzy number Piecewise linear approximation |
isfreeaccess_bool |
true |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Coroianu, Lucian @@aut@@ Gagolewski, Marek @@aut@@ Grzegorzewski, Przemyslaw @@aut@@ |
publishDateDaySort_date |
2019-02-14T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006507263 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006507263</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-03800-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006507263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-019-03800-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coroianu, Lucian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation of fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculations on fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristics of fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy number</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise linear approximation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gagolewski, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grzegorzewski, Przemyslaw</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">23(2019), 19 vom: 14. Feb., Seite 9491-9505</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:19</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:9491-9505</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-019-03800-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">19</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">9491-9505</subfield></datafield></record></collection>
|
author |
Coroianu, Lucian |
spellingShingle |
Coroianu, Lucian misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
authorStr |
Coroianu, Lucian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics Approximation of fuzzy numbers (dpeaa)DE-He213 Calculations on fuzzy numbers (dpeaa)DE-He213 Characteristics of fuzzy numbers (dpeaa)DE-He213 Fuzzy number (dpeaa)DE-He213 Piecewise linear approximation (dpeaa)DE-He213 |
topic |
misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation |
topic_unstemmed |
misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation |
topic_browse |
misc Approximation of fuzzy numbers misc Calculations on fuzzy numbers misc Characteristics of fuzzy numbers misc Fuzzy number misc Piecewise linear approximation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
ctrlnum |
(DE-627)SPR006507263 (SPR)s00500-019-03800-2-e |
title_full |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
author_sort |
Coroianu, Lucian |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
9491 |
author_browse |
Coroianu, Lucian Gagolewski, Marek Grzegorzewski, Przemyslaw |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Coroianu, Lucian |
doi_str_mv |
10.1007/s00500-019-03800-2 |
author2-role |
verfasserin |
title_sort |
piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
title_auth |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
abstract |
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. |
abstractGer |
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. |
abstract_unstemmed |
Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
19 |
title_short |
Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics |
url |
https://dx.doi.org/10.1007/s00500-019-03800-2 |
remote_bool |
true |
author2 |
Gagolewski, Marek Grzegorzewski, Przemyslaw |
author2Str |
Gagolewski, Marek Grzegorzewski, Przemyslaw |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-019-03800-2 |
up_date |
2024-07-03T23:19:24.778Z |
_version_ |
1803601853581099008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006507263</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-03800-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006507263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-019-03800-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Coroianu, Lucian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Piecewise linear approximation of fuzzy numbers: algorithms, arithmetic operations and stability of characteristics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The problem of the piecewise linear approximation of fuzzy numbers giving outputs nearest to the inputs with respect to the Euclidean metric is discussed. The results given in Coroianu et al. (Fuzzy Sets Syst 233:26–51, 2013) for the 1-knot fuzzy numbers are generalized for arbitrary n-knot (%$n\ge 2%$) piecewise linear fuzzy numbers. Some results on the existence and properties of the approximation operator are proved. Then, the stability of some fuzzy number characteristics under approximation as the number of knots tends to infinity is considered. Finally, a simulation study concerning the computer implementations of arithmetic operations on fuzzy numbers is provided. Suggested concepts are illustrated by examples and algorithms ready for the practical use. This way, we throw a bridge between theory and applications as the latter ones are so desired in real-world problems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation of fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Calculations on fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characteristics of fuzzy numbers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy number</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Piecewise linear approximation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gagolewski, Marek</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grzegorzewski, Przemyslaw</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">23(2019), 19 vom: 14. Feb., Seite 9491-9505</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:19</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:9491-9505</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-019-03800-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">19</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield><subfield code="h">9491-9505</subfield></datafield></record></collection>
|
score |
7.3996716 |