An improved rough set approach for optimal trust measure parameter selection in cloud environments
Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requir...
Ausführliche Beschreibung
Autor*in: |
Nivethitha, Somu [verfasserIn] Gauthama Raman, M. R. [verfasserIn] Gireesha, Obulaporam [verfasserIn] Kannan, Krithivasan [verfasserIn] Shankar Sriram, V. S. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Trust measure parameters (TMPs) Binary fruit fly optimization (BFFO) |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 23(2019), 22 vom: 31. Jan., Seite 11979-11999 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2019 ; number:22 ; day:31 ; month:01 ; pages:11979-11999 |
Links: |
---|
DOI / URN: |
10.1007/s00500-018-03753-y |
---|
Katalog-ID: |
SPR00650888X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR00650888X | ||
003 | DE-627 | ||
005 | 20201124002916.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-018-03753-y |2 doi | |
035 | |a (DE-627)SPR00650888X | ||
035 | |a (SPR)s00500-018-03753-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Nivethitha, Somu |e verfasserin |4 aut | |
245 | 1 | 3 | |a An improved rough set approach for optimal trust measure parameter selection in cloud environments |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. | ||
650 | 4 | |a Trust measure parameters (TMPs) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rough set theory (RST) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hypergraph |7 (dpeaa)DE-He213 | |
650 | 4 | |a Binary fruit fly optimization (BFFO) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hypergraph-based computational model (HGCM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cloud service ranking |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gauthama Raman, M. R. |e verfasserin |4 aut | |
700 | 1 | |a Gireesha, Obulaporam |e verfasserin |4 aut | |
700 | 1 | |a Kannan, Krithivasan |e verfasserin |4 aut | |
700 | 1 | |a Shankar Sriram, V. S. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 23(2019), 22 vom: 31. Jan., Seite 11979-11999 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2019 |g number:22 |g day:31 |g month:01 |g pages:11979-11999 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-018-03753-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 23 |j 2019 |e 22 |b 31 |c 01 |h 11979-11999 |
author_variant |
s n sn r m r g rmr rmrg o g og k k kk s v s s svs svss |
---|---|
matchkey_str |
nivethithasomugauthamaramanmrgireeshaobu:2019----:nmrvdogstprahootmlrsmaueaaeeslc |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00500-018-03753-y doi (DE-627)SPR00650888X (SPR)s00500-018-03753-y-e DE-627 ger DE-627 rakwb eng Nivethitha, Somu verfasserin aut An improved rough set approach for optimal trust measure parameter selection in cloud environments 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. Trust measure parameters (TMPs) (dpeaa)DE-He213 Rough set theory (RST) (dpeaa)DE-He213 Hypergraph (dpeaa)DE-He213 Binary fruit fly optimization (BFFO) (dpeaa)DE-He213 Hypergraph-based computational model (HGCM) (dpeaa)DE-He213 Cloud service ranking (dpeaa)DE-He213 Gauthama Raman, M. R. verfasserin aut Gireesha, Obulaporam verfasserin aut Kannan, Krithivasan verfasserin aut Shankar Sriram, V. S. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 22 vom: 31. Jan., Seite 11979-11999 (DE-627)SPR006469531 nnns volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 https://dx.doi.org/10.1007/s00500-018-03753-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 22 31 01 11979-11999 |
spelling |
10.1007/s00500-018-03753-y doi (DE-627)SPR00650888X (SPR)s00500-018-03753-y-e DE-627 ger DE-627 rakwb eng Nivethitha, Somu verfasserin aut An improved rough set approach for optimal trust measure parameter selection in cloud environments 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. Trust measure parameters (TMPs) (dpeaa)DE-He213 Rough set theory (RST) (dpeaa)DE-He213 Hypergraph (dpeaa)DE-He213 Binary fruit fly optimization (BFFO) (dpeaa)DE-He213 Hypergraph-based computational model (HGCM) (dpeaa)DE-He213 Cloud service ranking (dpeaa)DE-He213 Gauthama Raman, M. R. verfasserin aut Gireesha, Obulaporam verfasserin aut Kannan, Krithivasan verfasserin aut Shankar Sriram, V. S. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 22 vom: 31. Jan., Seite 11979-11999 (DE-627)SPR006469531 nnns volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 https://dx.doi.org/10.1007/s00500-018-03753-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 22 31 01 11979-11999 |
allfields_unstemmed |
10.1007/s00500-018-03753-y doi (DE-627)SPR00650888X (SPR)s00500-018-03753-y-e DE-627 ger DE-627 rakwb eng Nivethitha, Somu verfasserin aut An improved rough set approach for optimal trust measure parameter selection in cloud environments 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. Trust measure parameters (TMPs) (dpeaa)DE-He213 Rough set theory (RST) (dpeaa)DE-He213 Hypergraph (dpeaa)DE-He213 Binary fruit fly optimization (BFFO) (dpeaa)DE-He213 Hypergraph-based computational model (HGCM) (dpeaa)DE-He213 Cloud service ranking (dpeaa)DE-He213 Gauthama Raman, M. R. verfasserin aut Gireesha, Obulaporam verfasserin aut Kannan, Krithivasan verfasserin aut Shankar Sriram, V. S. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 22 vom: 31. Jan., Seite 11979-11999 (DE-627)SPR006469531 nnns volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 https://dx.doi.org/10.1007/s00500-018-03753-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 22 31 01 11979-11999 |
allfieldsGer |
10.1007/s00500-018-03753-y doi (DE-627)SPR00650888X (SPR)s00500-018-03753-y-e DE-627 ger DE-627 rakwb eng Nivethitha, Somu verfasserin aut An improved rough set approach for optimal trust measure parameter selection in cloud environments 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. Trust measure parameters (TMPs) (dpeaa)DE-He213 Rough set theory (RST) (dpeaa)DE-He213 Hypergraph (dpeaa)DE-He213 Binary fruit fly optimization (BFFO) (dpeaa)DE-He213 Hypergraph-based computational model (HGCM) (dpeaa)DE-He213 Cloud service ranking (dpeaa)DE-He213 Gauthama Raman, M. R. verfasserin aut Gireesha, Obulaporam verfasserin aut Kannan, Krithivasan verfasserin aut Shankar Sriram, V. S. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 22 vom: 31. Jan., Seite 11979-11999 (DE-627)SPR006469531 nnns volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 https://dx.doi.org/10.1007/s00500-018-03753-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 22 31 01 11979-11999 |
allfieldsSound |
10.1007/s00500-018-03753-y doi (DE-627)SPR00650888X (SPR)s00500-018-03753-y-e DE-627 ger DE-627 rakwb eng Nivethitha, Somu verfasserin aut An improved rough set approach for optimal trust measure parameter selection in cloud environments 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. Trust measure parameters (TMPs) (dpeaa)DE-He213 Rough set theory (RST) (dpeaa)DE-He213 Hypergraph (dpeaa)DE-He213 Binary fruit fly optimization (BFFO) (dpeaa)DE-He213 Hypergraph-based computational model (HGCM) (dpeaa)DE-He213 Cloud service ranking (dpeaa)DE-He213 Gauthama Raman, M. R. verfasserin aut Gireesha, Obulaporam verfasserin aut Kannan, Krithivasan verfasserin aut Shankar Sriram, V. S. verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 22 vom: 31. Jan., Seite 11979-11999 (DE-627)SPR006469531 nnns volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 https://dx.doi.org/10.1007/s00500-018-03753-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 22 31 01 11979-11999 |
language |
English |
source |
Enthalten in Soft Computing 23(2019), 22 vom: 31. Jan., Seite 11979-11999 volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 |
sourceStr |
Enthalten in Soft Computing 23(2019), 22 vom: 31. Jan., Seite 11979-11999 volume:23 year:2019 number:22 day:31 month:01 pages:11979-11999 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Trust measure parameters (TMPs) Rough set theory (RST) Hypergraph Binary fruit fly optimization (BFFO) Hypergraph-based computational model (HGCM) Cloud service ranking |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Nivethitha, Somu @@aut@@ Gauthama Raman, M. R. @@aut@@ Gireesha, Obulaporam @@aut@@ Kannan, Krithivasan @@aut@@ Shankar Sriram, V. S. @@aut@@ |
publishDateDaySort_date |
2019-01-31T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR00650888X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00650888X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002916.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-018-03753-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00650888X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-018-03753-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nivethitha, Somu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An improved rough set approach for optimal trust measure parameter selection in cloud environments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trust measure parameters (TMPs)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough set theory (RST)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binary fruit fly optimization (BFFO)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph-based computational model (HGCM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud service ranking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gauthama Raman, M. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gireesha, Obulaporam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kannan, Krithivasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shankar Sriram, V. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">23(2019), 22 vom: 31. Jan., Seite 11979-11999</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:22</subfield><subfield code="g">day:31</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:11979-11999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-018-03753-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">22</subfield><subfield code="b">31</subfield><subfield code="c">01</subfield><subfield code="h">11979-11999</subfield></datafield></record></collection>
|
author |
Nivethitha, Somu |
spellingShingle |
Nivethitha, Somu misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Binary fruit fly optimization (BFFO) misc Hypergraph-based computational model (HGCM) misc Cloud service ranking An improved rough set approach for optimal trust measure parameter selection in cloud environments |
authorStr |
Nivethitha, Somu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
An improved rough set approach for optimal trust measure parameter selection in cloud environments Trust measure parameters (TMPs) (dpeaa)DE-He213 Rough set theory (RST) (dpeaa)DE-He213 Hypergraph (dpeaa)DE-He213 Binary fruit fly optimization (BFFO) (dpeaa)DE-He213 Hypergraph-based computational model (HGCM) (dpeaa)DE-He213 Cloud service ranking (dpeaa)DE-He213 |
topic |
misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Binary fruit fly optimization (BFFO) misc Hypergraph-based computational model (HGCM) misc Cloud service ranking |
topic_unstemmed |
misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Binary fruit fly optimization (BFFO) misc Hypergraph-based computational model (HGCM) misc Cloud service ranking |
topic_browse |
misc Trust measure parameters (TMPs) misc Rough set theory (RST) misc Hypergraph misc Binary fruit fly optimization (BFFO) misc Hypergraph-based computational model (HGCM) misc Cloud service ranking |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
An improved rough set approach for optimal trust measure parameter selection in cloud environments |
ctrlnum |
(DE-627)SPR00650888X (SPR)s00500-018-03753-y-e |
title_full |
An improved rough set approach for optimal trust measure parameter selection in cloud environments |
author_sort |
Nivethitha, Somu |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
11979 |
author_browse |
Nivethitha, Somu Gauthama Raman, M. R. Gireesha, Obulaporam Kannan, Krithivasan Shankar Sriram, V. S. |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Nivethitha, Somu |
doi_str_mv |
10.1007/s00500-018-03753-y |
author2-role |
verfasserin |
title_sort |
improved rough set approach for optimal trust measure parameter selection in cloud environments |
title_auth |
An improved rough set approach for optimal trust measure parameter selection in cloud environments |
abstract |
Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. |
abstractGer |
Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. |
abstract_unstemmed |
Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
22 |
title_short |
An improved rough set approach for optimal trust measure parameter selection in cloud environments |
url |
https://dx.doi.org/10.1007/s00500-018-03753-y |
remote_bool |
true |
author2 |
Gauthama Raman, M. R. Gireesha, Obulaporam Kannan, Krithivasan Shankar Sriram, V. S. |
author2Str |
Gauthama Raman, M. R. Gireesha, Obulaporam Kannan, Krithivasan Shankar Sriram, V. S. |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-018-03753-y |
up_date |
2024-07-03T23:19:45.420Z |
_version_ |
1803601875225804800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00650888X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002916.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-018-03753-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00650888X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-018-03753-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nivethitha, Somu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An improved rough set approach for optimal trust measure parameter selection in cloud environments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The existence of a multitude of cloud service providers (CSPs) for each service type increases the difficulty in the identification of appropriate and trustworthy service providers based on their abilities and cloud users’ unique functional and non-functional quality-of-service (QoS) requirements. Further, the dynamic nature of the cloud ecosystem in terms of performance and new services increases the complexity of the cloud service selection problem. Trust-based service selection mechanisms which involve the intrinsic relations among the QoS parameters or trust measure parameters (TMPs) to evaluate the quality of the CSPs are the most preferred solution for the problem of cloud service selection. However, the accuracy of the trust-based service selection models and the CSP’s trust value relies on the optimality of the TMP subset obtained with respect to the service type. Hence, this work presents an efficient rough set theory-based hypergraph-binary fruit fly optimization (RST-HGBFFO), a cooperative bio-inspired technique to identify the optimal service-specific TMPs. Experiments on QWS dataset, Cloud Armor, and CISH—SASTRA trust feedback dataset reveal the predominance of RST-HGBFFO over the state-of-the-art feature selection techniques. The performance of RST-HGBFFO feature selection technique was validated using hypergraph-based computational model and WEKA tool in terms of reduct size, service ranking, classification accuracy, and time complexity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Trust measure parameters (TMPs)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough set theory (RST)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binary fruit fly optimization (BFFO)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypergraph-based computational model (HGCM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cloud service ranking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gauthama Raman, M. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gireesha, Obulaporam</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kannan, Krithivasan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shankar Sriram, V. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">23(2019), 22 vom: 31. Jan., Seite 11979-11999</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:22</subfield><subfield code="g">day:31</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:11979-11999</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-018-03753-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">22</subfield><subfield code="b">31</subfield><subfield code="c">01</subfield><subfield code="h">11979-11999</subfield></datafield></record></collection>
|
score |
7.402916 |