An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions
Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorith...
Ausführliche Beschreibung
Autor*in: |
Fan, Zhun [verfasserIn] Li, Wenji [verfasserIn] Cai, Xinye [verfasserIn] Huang, Han [verfasserIn] Fang, Yi [verfasserIn] You, Yugen [verfasserIn] Mo, Jiajie [verfasserIn] Wei, Caimin [verfasserIn] Goodman, Erik [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
Constrained multi-objective evolutionary algorithms |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 23(2019), 23 vom: 04. Feb., Seite 12491-12510 |
---|---|
Übergeordnetes Werk: |
volume:23 ; year:2019 ; number:23 ; day:04 ; month:02 ; pages:12491-12510 |
Links: |
---|
DOI / URN: |
10.1007/s00500-019-03794-x |
---|
Katalog-ID: |
SPR006509223 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006509223 | ||
003 | DE-627 | ||
005 | 20201124002917.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-019-03794-x |2 doi | |
035 | |a (DE-627)SPR006509223 | ||
035 | |a (SPR)s00500-019-03794-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Fan, Zhun |e verfasserin |4 aut | |
245 | 1 | 3 | |a An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. | ||
650 | 4 | |a Constrained multi-objective evolutionary algorithms |7 (dpeaa)DE-He213 | |
650 | 4 | |a Epsilon constraint handling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Constrained multi-objective optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Robot gripper optimization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Wenji |e verfasserin |4 aut | |
700 | 1 | |a Cai, Xinye |e verfasserin |4 aut | |
700 | 1 | |a Huang, Han |e verfasserin |4 aut | |
700 | 1 | |a Fang, Yi |e verfasserin |4 aut | |
700 | 1 | |a You, Yugen |e verfasserin |4 aut | |
700 | 1 | |a Mo, Jiajie |e verfasserin |4 aut | |
700 | 1 | |a Wei, Caimin |e verfasserin |4 aut | |
700 | 1 | |a Goodman, Erik |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 23(2019), 23 vom: 04. Feb., Seite 12491-12510 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:23 |g year:2019 |g number:23 |g day:04 |g month:02 |g pages:12491-12510 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-019-03794-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 23 |j 2019 |e 23 |b 04 |c 02 |h 12491-12510 |
author_variant |
z f zf w l wl x c xc h h hh y f yf y y yy j m jm c w cw e g eg |
---|---|
matchkey_str |
fanzhunliwenjicaixinyehuanghanfangyiyouy:2019----:nmrvdpiocntanhnlnmtoimedocosih |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00500-019-03794-x doi (DE-627)SPR006509223 (SPR)s00500-019-03794-x-e DE-627 ger DE-627 rakwb eng Fan, Zhun verfasserin aut An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. Constrained multi-objective evolutionary algorithms (dpeaa)DE-He213 Epsilon constraint handling (dpeaa)DE-He213 Constrained multi-objective optimization (dpeaa)DE-He213 Robot gripper optimization (dpeaa)DE-He213 Li, Wenji verfasserin aut Cai, Xinye verfasserin aut Huang, Han verfasserin aut Fang, Yi verfasserin aut You, Yugen verfasserin aut Mo, Jiajie verfasserin aut Wei, Caimin verfasserin aut Goodman, Erik verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 23 vom: 04. Feb., Seite 12491-12510 (DE-627)SPR006469531 nnns volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 https://dx.doi.org/10.1007/s00500-019-03794-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 23 04 02 12491-12510 |
spelling |
10.1007/s00500-019-03794-x doi (DE-627)SPR006509223 (SPR)s00500-019-03794-x-e DE-627 ger DE-627 rakwb eng Fan, Zhun verfasserin aut An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. Constrained multi-objective evolutionary algorithms (dpeaa)DE-He213 Epsilon constraint handling (dpeaa)DE-He213 Constrained multi-objective optimization (dpeaa)DE-He213 Robot gripper optimization (dpeaa)DE-He213 Li, Wenji verfasserin aut Cai, Xinye verfasserin aut Huang, Han verfasserin aut Fang, Yi verfasserin aut You, Yugen verfasserin aut Mo, Jiajie verfasserin aut Wei, Caimin verfasserin aut Goodman, Erik verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 23 vom: 04. Feb., Seite 12491-12510 (DE-627)SPR006469531 nnns volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 https://dx.doi.org/10.1007/s00500-019-03794-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 23 04 02 12491-12510 |
allfields_unstemmed |
10.1007/s00500-019-03794-x doi (DE-627)SPR006509223 (SPR)s00500-019-03794-x-e DE-627 ger DE-627 rakwb eng Fan, Zhun verfasserin aut An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. Constrained multi-objective evolutionary algorithms (dpeaa)DE-He213 Epsilon constraint handling (dpeaa)DE-He213 Constrained multi-objective optimization (dpeaa)DE-He213 Robot gripper optimization (dpeaa)DE-He213 Li, Wenji verfasserin aut Cai, Xinye verfasserin aut Huang, Han verfasserin aut Fang, Yi verfasserin aut You, Yugen verfasserin aut Mo, Jiajie verfasserin aut Wei, Caimin verfasserin aut Goodman, Erik verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 23 vom: 04. Feb., Seite 12491-12510 (DE-627)SPR006469531 nnns volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 https://dx.doi.org/10.1007/s00500-019-03794-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 23 04 02 12491-12510 |
allfieldsGer |
10.1007/s00500-019-03794-x doi (DE-627)SPR006509223 (SPR)s00500-019-03794-x-e DE-627 ger DE-627 rakwb eng Fan, Zhun verfasserin aut An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. Constrained multi-objective evolutionary algorithms (dpeaa)DE-He213 Epsilon constraint handling (dpeaa)DE-He213 Constrained multi-objective optimization (dpeaa)DE-He213 Robot gripper optimization (dpeaa)DE-He213 Li, Wenji verfasserin aut Cai, Xinye verfasserin aut Huang, Han verfasserin aut Fang, Yi verfasserin aut You, Yugen verfasserin aut Mo, Jiajie verfasserin aut Wei, Caimin verfasserin aut Goodman, Erik verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 23 vom: 04. Feb., Seite 12491-12510 (DE-627)SPR006469531 nnns volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 https://dx.doi.org/10.1007/s00500-019-03794-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 23 04 02 12491-12510 |
allfieldsSound |
10.1007/s00500-019-03794-x doi (DE-627)SPR006509223 (SPR)s00500-019-03794-x-e DE-627 ger DE-627 rakwb eng Fan, Zhun verfasserin aut An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. Constrained multi-objective evolutionary algorithms (dpeaa)DE-He213 Epsilon constraint handling (dpeaa)DE-He213 Constrained multi-objective optimization (dpeaa)DE-He213 Robot gripper optimization (dpeaa)DE-He213 Li, Wenji verfasserin aut Cai, Xinye verfasserin aut Huang, Han verfasserin aut Fang, Yi verfasserin aut You, Yugen verfasserin aut Mo, Jiajie verfasserin aut Wei, Caimin verfasserin aut Goodman, Erik verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 23(2019), 23 vom: 04. Feb., Seite 12491-12510 (DE-627)SPR006469531 nnns volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 https://dx.doi.org/10.1007/s00500-019-03794-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 23 2019 23 04 02 12491-12510 |
language |
English |
source |
Enthalten in Soft Computing 23(2019), 23 vom: 04. Feb., Seite 12491-12510 volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 |
sourceStr |
Enthalten in Soft Computing 23(2019), 23 vom: 04. Feb., Seite 12491-12510 volume:23 year:2019 number:23 day:04 month:02 pages:12491-12510 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Constrained multi-objective evolutionary algorithms Epsilon constraint handling Constrained multi-objective optimization Robot gripper optimization |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Fan, Zhun @@aut@@ Li, Wenji @@aut@@ Cai, Xinye @@aut@@ Huang, Han @@aut@@ Fang, Yi @@aut@@ You, Yugen @@aut@@ Mo, Jiajie @@aut@@ Wei, Caimin @@aut@@ Goodman, Erik @@aut@@ |
publishDateDaySort_date |
2019-02-04T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006509223 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006509223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-03794-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006509223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-019-03794-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fan, Zhun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained multi-objective evolutionary algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epsilon constraint handling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained multi-objective optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot gripper optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wenji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Xinye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">You, Yugen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mo, Jiajie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Caimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodman, Erik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">23(2019), 23 vom: 04. Feb., Seite 12491-12510</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:23</subfield><subfield code="g">day:04</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:12491-12510</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-019-03794-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">23</subfield><subfield code="b">04</subfield><subfield code="c">02</subfield><subfield code="h">12491-12510</subfield></datafield></record></collection>
|
author |
Fan, Zhun |
spellingShingle |
Fan, Zhun misc Constrained multi-objective evolutionary algorithms misc Epsilon constraint handling misc Constrained multi-objective optimization misc Robot gripper optimization An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
authorStr |
Fan, Zhun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions Constrained multi-objective evolutionary algorithms (dpeaa)DE-He213 Epsilon constraint handling (dpeaa)DE-He213 Constrained multi-objective optimization (dpeaa)DE-He213 Robot gripper optimization (dpeaa)DE-He213 |
topic |
misc Constrained multi-objective evolutionary algorithms misc Epsilon constraint handling misc Constrained multi-objective optimization misc Robot gripper optimization |
topic_unstemmed |
misc Constrained multi-objective evolutionary algorithms misc Epsilon constraint handling misc Constrained multi-objective optimization misc Robot gripper optimization |
topic_browse |
misc Constrained multi-objective evolutionary algorithms misc Epsilon constraint handling misc Constrained multi-objective optimization misc Robot gripper optimization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
ctrlnum |
(DE-627)SPR006509223 (SPR)s00500-019-03794-x-e |
title_full |
An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
author_sort |
Fan, Zhun |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
12491 |
author_browse |
Fan, Zhun Li, Wenji Cai, Xinye Huang, Han Fang, Yi You, Yugen Mo, Jiajie Wei, Caimin Goodman, Erik |
container_volume |
23 |
format_se |
Elektronische Aufsätze |
author-letter |
Fan, Zhun |
doi_str_mv |
10.1007/s00500-019-03794-x |
author2-role |
verfasserin |
title_sort |
improved epsilon constraint-handling method in moea/d for cmops with large infeasible regions |
title_auth |
An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
abstract |
Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. |
abstractGer |
Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. |
abstract_unstemmed |
Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
23 |
title_short |
An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions |
url |
https://dx.doi.org/10.1007/s00500-019-03794-x |
remote_bool |
true |
author2 |
Li, Wenji Cai, Xinye Huang, Han Fang, Yi You, Yugen Mo, Jiajie Wei, Caimin Goodman, Erik |
author2Str |
Li, Wenji Cai, Xinye Huang, Han Fang, Yi You, Yugen Mo, Jiajie Wei, Caimin Goodman, Erik |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-019-03794-x |
up_date |
2024-07-03T23:19:50.011Z |
_version_ |
1803601880038768640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006509223</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002917.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-03794-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006509223</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-019-03794-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fan, Zhun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes an improved epsilon constraint-handling mechanism and combines it with a decomposition-based multi-objective evolutionary algorithm (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). The proposed constrained multi-objective evolutionary algorithm (CMOEA) is named MOEA/D-IEpsilon. It adjusts the epsilon level dynamically according to the ratio of feasible to total solutions in the current population. In order to evaluate the performance of MOEA/D-IEpsilon, a new set of CMOPs with two and three objectives is designed, having large infeasible regions (relative to the feasible regions), and they are called LIR-CMOPs. Then, the 14 benchmarks, including LIR-CMOP1-14, are used to test MOEA/D-IEpsilon and four other decomposition-based CMOEAs, including MOEA/D-Epsilon, MOEA/D-SR, MOEA/D-CDP and CMOEA/D. The experimental results indicate that MOEA/D-IEpsilon is significantly better than the other four CMOEAs on all of the test instances, which shows that MOEA/D-IEpsilon is more suitable for solving CMOPs with large infeasible regions. Furthermore, a real-world problem, namely the robot gripper optimization problem, is used to test the five CMOEAs. The experimental results demonstrate that MOEA/D-IEpsilon also outperforms the other four CMOEAs on this problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained multi-objective evolutionary algorithms</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epsilon constraint handling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Constrained multi-objective optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Robot gripper optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wenji</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Xinye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Han</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fang, Yi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">You, Yugen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mo, Jiajie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wei, Caimin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goodman, Erik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">23(2019), 23 vom: 04. Feb., Seite 12491-12510</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:23</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:23</subfield><subfield code="g">day:04</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:12491-12510</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-019-03794-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">23</subfield><subfield code="j">2019</subfield><subfield code="e">23</subfield><subfield code="b">04</subfield><subfield code="c">02</subfield><subfield code="h">12491-12510</subfield></datafield></record></collection>
|
score |
7.401745 |