FuzzyCIE: fuzzy colour image enhancement for low-exposure images
Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in th...
Ausführliche Beschreibung
Autor*in: |
Mandal, Soham [verfasserIn] Mitra, Sushmita [verfasserIn] Shankar, B. Uma [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Soft Computing - Springer-Verlag, 2003, 24(2019), 3 vom: 15. Mai, Seite 2151-2167 |
---|---|
Übergeordnetes Werk: |
volume:24 ; year:2019 ; number:3 ; day:15 ; month:05 ; pages:2151-2167 |
Links: |
---|
DOI / URN: |
10.1007/s00500-019-04048-6 |
---|
Katalog-ID: |
SPR006513239 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006513239 | ||
003 | DE-627 | ||
005 | 20201124002928.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-019-04048-6 |2 doi | |
035 | |a (DE-627)SPR006513239 | ||
035 | |a (SPR)s00500-019-04048-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mandal, Soham |e verfasserin |4 aut | |
245 | 1 | 0 | |a FuzzyCIE: fuzzy colour image enhancement for low-exposure images |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. | ||
650 | 4 | |a Image enhancement |7 (dpeaa)DE-He213 | |
650 | 4 | |a Histogram equalization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Structural similarity index |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feature similarity index |7 (dpeaa)DE-He213 | |
650 | 4 | |a Low-exposure colour image |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy histogram |7 (dpeaa)DE-He213 | |
700 | 1 | |a Mitra, Sushmita |e verfasserin |4 aut | |
700 | 1 | |a Shankar, B. Uma |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft Computing |d Springer-Verlag, 2003 |g 24(2019), 3 vom: 15. Mai, Seite 2151-2167 |w (DE-627)SPR006469531 |7 nnns |
773 | 1 | 8 | |g volume:24 |g year:2019 |g number:3 |g day:15 |g month:05 |g pages:2151-2167 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00500-019-04048-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 24 |j 2019 |e 3 |b 15 |c 05 |h 2151-2167 |
author_variant |
s m sm s m sm b u s bu bus |
---|---|
matchkey_str |
mandalsohammitrasushmitashankarbuma:2019----:uzceuzcluiaenacmnfr |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s00500-019-04048-6 doi (DE-627)SPR006513239 (SPR)s00500-019-04048-6-e DE-627 ger DE-627 rakwb eng Mandal, Soham verfasserin aut FuzzyCIE: fuzzy colour image enhancement for low-exposure images 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. Image enhancement (dpeaa)DE-He213 Histogram equalization (dpeaa)DE-He213 Structural similarity index (dpeaa)DE-He213 Feature similarity index (dpeaa)DE-He213 Low-exposure colour image (dpeaa)DE-He213 Fuzzy histogram (dpeaa)DE-He213 Mitra, Sushmita verfasserin aut Shankar, B. Uma verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 24(2019), 3 vom: 15. Mai, Seite 2151-2167 (DE-627)SPR006469531 nnns volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 https://dx.doi.org/10.1007/s00500-019-04048-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2019 3 15 05 2151-2167 |
spelling |
10.1007/s00500-019-04048-6 doi (DE-627)SPR006513239 (SPR)s00500-019-04048-6-e DE-627 ger DE-627 rakwb eng Mandal, Soham verfasserin aut FuzzyCIE: fuzzy colour image enhancement for low-exposure images 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. Image enhancement (dpeaa)DE-He213 Histogram equalization (dpeaa)DE-He213 Structural similarity index (dpeaa)DE-He213 Feature similarity index (dpeaa)DE-He213 Low-exposure colour image (dpeaa)DE-He213 Fuzzy histogram (dpeaa)DE-He213 Mitra, Sushmita verfasserin aut Shankar, B. Uma verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 24(2019), 3 vom: 15. Mai, Seite 2151-2167 (DE-627)SPR006469531 nnns volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 https://dx.doi.org/10.1007/s00500-019-04048-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2019 3 15 05 2151-2167 |
allfields_unstemmed |
10.1007/s00500-019-04048-6 doi (DE-627)SPR006513239 (SPR)s00500-019-04048-6-e DE-627 ger DE-627 rakwb eng Mandal, Soham verfasserin aut FuzzyCIE: fuzzy colour image enhancement for low-exposure images 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. Image enhancement (dpeaa)DE-He213 Histogram equalization (dpeaa)DE-He213 Structural similarity index (dpeaa)DE-He213 Feature similarity index (dpeaa)DE-He213 Low-exposure colour image (dpeaa)DE-He213 Fuzzy histogram (dpeaa)DE-He213 Mitra, Sushmita verfasserin aut Shankar, B. Uma verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 24(2019), 3 vom: 15. Mai, Seite 2151-2167 (DE-627)SPR006469531 nnns volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 https://dx.doi.org/10.1007/s00500-019-04048-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2019 3 15 05 2151-2167 |
allfieldsGer |
10.1007/s00500-019-04048-6 doi (DE-627)SPR006513239 (SPR)s00500-019-04048-6-e DE-627 ger DE-627 rakwb eng Mandal, Soham verfasserin aut FuzzyCIE: fuzzy colour image enhancement for low-exposure images 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. Image enhancement (dpeaa)DE-He213 Histogram equalization (dpeaa)DE-He213 Structural similarity index (dpeaa)DE-He213 Feature similarity index (dpeaa)DE-He213 Low-exposure colour image (dpeaa)DE-He213 Fuzzy histogram (dpeaa)DE-He213 Mitra, Sushmita verfasserin aut Shankar, B. Uma verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 24(2019), 3 vom: 15. Mai, Seite 2151-2167 (DE-627)SPR006469531 nnns volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 https://dx.doi.org/10.1007/s00500-019-04048-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2019 3 15 05 2151-2167 |
allfieldsSound |
10.1007/s00500-019-04048-6 doi (DE-627)SPR006513239 (SPR)s00500-019-04048-6-e DE-627 ger DE-627 rakwb eng Mandal, Soham verfasserin aut FuzzyCIE: fuzzy colour image enhancement for low-exposure images 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. Image enhancement (dpeaa)DE-He213 Histogram equalization (dpeaa)DE-He213 Structural similarity index (dpeaa)DE-He213 Feature similarity index (dpeaa)DE-He213 Low-exposure colour image (dpeaa)DE-He213 Fuzzy histogram (dpeaa)DE-He213 Mitra, Sushmita verfasserin aut Shankar, B. Uma verfasserin aut Enthalten in Soft Computing Springer-Verlag, 2003 24(2019), 3 vom: 15. Mai, Seite 2151-2167 (DE-627)SPR006469531 nnns volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 https://dx.doi.org/10.1007/s00500-019-04048-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 24 2019 3 15 05 2151-2167 |
language |
English |
source |
Enthalten in Soft Computing 24(2019), 3 vom: 15. Mai, Seite 2151-2167 volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 |
sourceStr |
Enthalten in Soft Computing 24(2019), 3 vom: 15. Mai, Seite 2151-2167 volume:24 year:2019 number:3 day:15 month:05 pages:2151-2167 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Image enhancement Histogram equalization Structural similarity index Feature similarity index Low-exposure colour image Fuzzy histogram |
isfreeaccess_bool |
false |
container_title |
Soft Computing |
authorswithroles_txt_mv |
Mandal, Soham @@aut@@ Mitra, Sushmita @@aut@@ Shankar, B. Uma @@aut@@ |
publishDateDaySort_date |
2019-05-15T00:00:00Z |
hierarchy_top_id |
SPR006469531 |
id |
SPR006513239 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006513239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002928.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-04048-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006513239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-019-04048-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandal, Soham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">FuzzyCIE: fuzzy colour image enhancement for low-exposure images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image enhancement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histogram equalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural similarity index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature similarity index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-exposure colour image</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy histogram</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitra, Sushmita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shankar, B. Uma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">24(2019), 3 vom: 15. Mai, Seite 2151-2167</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2151-2167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-019-04048-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">05</subfield><subfield code="h">2151-2167</subfield></datafield></record></collection>
|
author |
Mandal, Soham |
spellingShingle |
Mandal, Soham misc Image enhancement misc Histogram equalization misc Structural similarity index misc Feature similarity index misc Low-exposure colour image misc Fuzzy histogram FuzzyCIE: fuzzy colour image enhancement for low-exposure images |
authorStr |
Mandal, Soham |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR006469531 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
FuzzyCIE: fuzzy colour image enhancement for low-exposure images Image enhancement (dpeaa)DE-He213 Histogram equalization (dpeaa)DE-He213 Structural similarity index (dpeaa)DE-He213 Feature similarity index (dpeaa)DE-He213 Low-exposure colour image (dpeaa)DE-He213 Fuzzy histogram (dpeaa)DE-He213 |
topic |
misc Image enhancement misc Histogram equalization misc Structural similarity index misc Feature similarity index misc Low-exposure colour image misc Fuzzy histogram |
topic_unstemmed |
misc Image enhancement misc Histogram equalization misc Structural similarity index misc Feature similarity index misc Low-exposure colour image misc Fuzzy histogram |
topic_browse |
misc Image enhancement misc Histogram equalization misc Structural similarity index misc Feature similarity index misc Low-exposure colour image misc Fuzzy histogram |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Soft Computing |
hierarchy_parent_id |
SPR006469531 |
hierarchy_top_title |
Soft Computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR006469531 |
title |
FuzzyCIE: fuzzy colour image enhancement for low-exposure images |
ctrlnum |
(DE-627)SPR006513239 (SPR)s00500-019-04048-6-e |
title_full |
FuzzyCIE: fuzzy colour image enhancement for low-exposure images |
author_sort |
Mandal, Soham |
journal |
Soft Computing |
journalStr |
Soft Computing |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
2151 |
author_browse |
Mandal, Soham Mitra, Sushmita Shankar, B. Uma |
container_volume |
24 |
format_se |
Elektronische Aufsätze |
author-letter |
Mandal, Soham |
doi_str_mv |
10.1007/s00500-019-04048-6 |
author2-role |
verfasserin |
title_sort |
fuzzycie: fuzzy colour image enhancement for low-exposure images |
title_auth |
FuzzyCIE: fuzzy colour image enhancement for low-exposure images |
abstract |
Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. |
abstractGer |
Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. |
abstract_unstemmed |
Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
3 |
title_short |
FuzzyCIE: fuzzy colour image enhancement for low-exposure images |
url |
https://dx.doi.org/10.1007/s00500-019-04048-6 |
remote_bool |
true |
author2 |
Mitra, Sushmita Shankar, B. Uma |
author2Str |
Mitra, Sushmita Shankar, B. Uma |
ppnlink |
SPR006469531 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-019-04048-6 |
up_date |
2024-07-03T23:20:38.710Z |
_version_ |
1803601931103371264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006513239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124002928.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-019-04048-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006513239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00500-019-04048-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandal, Soham</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">FuzzyCIE: fuzzy colour image enhancement for low-exposure images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Colour image enhancement not only is of high importance in consumer electronics, but also plays significant role in medical imaging, remotely sensed imaging, etc. Moreover, low-exposure colour images inherently lack sufficient image details which are exclusively necessary for workings in these domains. To address this less explored problem, a novel enhancement algorithm involving estimation of the fuzzy histogram with thresholding based on the computed effect of exposure value has been proposed. The algorithm operates on the lightness (%$L^{*}%$) component of the input image in %$L^{*}a^{*}b^{*}%$ colour space, while preserving the colour-opponent dimensions (%$a^{*} %$ and %$ b^{*}%$) to maintain the natural outlook of the image. This technique has been experimentally demonstrated over a dataset consisting of images generated at different exposure levels. Quantitative and qualitative analysis of the relative performance of the proposed algorithm has been shown with respect to state-of-the-art enhancement algorithms over the %$L^{*}a^{*}b^{*}%$ space.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image enhancement</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histogram equalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Structural similarity index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature similarity index</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Low-exposure colour image</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy histogram</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mitra, Sushmita</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shankar, B. Uma</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft Computing</subfield><subfield code="d">Springer-Verlag, 2003</subfield><subfield code="g">24(2019), 3 vom: 15. Mai, Seite 2151-2167</subfield><subfield code="w">(DE-627)SPR006469531</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:24</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2151-2167</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00500-019-04048-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">24</subfield><subfield code="j">2019</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">05</subfield><subfield code="h">2151-2167</subfield></datafield></record></collection>
|
score |
7.402298 |