Magnesian andesites in north Xinjiang, China
Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $,...
Ausführliche Beschreibung
Autor*in: |
Zhao, Zhenhua [verfasserIn] Wang, Qiang [verfasserIn] Xiong, Xiaolin [verfasserIn] Niu, Hecai [verfasserIn] Zhang, Haixiang [verfasserIn] Qiao, Yulou [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Geologische Rundschau - Berlin : Springer, 1910, 98(2008), 6 vom: 09. Aug. |
---|---|
Übergeordnetes Werk: |
volume:98 ; year:2008 ; number:6 ; day:09 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/s00531-008-0339-7 |
---|
Katalog-ID: |
SPR006716555 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR006716555 | ||
003 | DE-627 | ||
005 | 20220110191453.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2008 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s00531-008-0339-7 |2 doi | |
035 | |a (DE-627)SPR006716555 | ||
035 | |a (SPR)s00531-008-0339-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q ASE |
084 | |a 38.10 |2 bkl | ||
100 | 1 | |a Zhao, Zhenhua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Magnesian andesites in north Xinjiang, China |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. | ||
650 | 4 | |a Magnesian andesites |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metasomatism of slab melts |7 (dpeaa)DE-He213 | |
650 | 4 | |a Subduction erosion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Asthenosphere window |7 (dpeaa)DE-He213 | |
650 | 4 | |a North Xinjiang |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wang, Qiang |e verfasserin |4 aut | |
700 | 1 | |a Xiong, Xiaolin |e verfasserin |4 aut | |
700 | 1 | |a Niu, Hecai |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Haixiang |e verfasserin |4 aut | |
700 | 1 | |a Qiao, Yulou |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geologische Rundschau |d Berlin : Springer, 1910 |g 98(2008), 6 vom: 09. Aug. |w (DE-627)47265019X |w (DE-600)2168407-8 |x 1432-1149 |7 nnns |
773 | 1 | 8 | |g volume:98 |g year:2008 |g number:6 |g day:09 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s00531-008-0339-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_647 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 38.10 |q ASE |
951 | |a AR | ||
952 | |d 98 |j 2008 |e 6 |b 09 |c 08 |
author_variant |
z z zz q w qw x x xx h n hn h z hz y q yq |
---|---|
matchkey_str |
article:14321149:2008----::ansaadstsnotx |
hierarchy_sort_str |
2008 |
bklnumber |
38.10 |
publishDate |
2008 |
allfields |
10.1007/s00531-008-0339-7 doi (DE-627)SPR006716555 (SPR)s00531-008-0339-7-e DE-627 ger DE-627 rakwb eng 550 ASE 38.10 bkl Zhao, Zhenhua verfasserin aut Magnesian andesites in north Xinjiang, China 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. Magnesian andesites (dpeaa)DE-He213 Metasomatism of slab melts (dpeaa)DE-He213 Subduction erosion (dpeaa)DE-He213 Asthenosphere window (dpeaa)DE-He213 North Xinjiang (dpeaa)DE-He213 Wang, Qiang verfasserin aut Xiong, Xiaolin verfasserin aut Niu, Hecai verfasserin aut Zhang, Haixiang verfasserin aut Qiao, Yulou verfasserin aut Enthalten in Geologische Rundschau Berlin : Springer, 1910 98(2008), 6 vom: 09. Aug. (DE-627)47265019X (DE-600)2168407-8 1432-1149 nnns volume:98 year:2008 number:6 day:09 month:08 https://dx.doi.org/10.1007/s00531-008-0339-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 38.10 ASE AR 98 2008 6 09 08 |
spelling |
10.1007/s00531-008-0339-7 doi (DE-627)SPR006716555 (SPR)s00531-008-0339-7-e DE-627 ger DE-627 rakwb eng 550 ASE 38.10 bkl Zhao, Zhenhua verfasserin aut Magnesian andesites in north Xinjiang, China 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. Magnesian andesites (dpeaa)DE-He213 Metasomatism of slab melts (dpeaa)DE-He213 Subduction erosion (dpeaa)DE-He213 Asthenosphere window (dpeaa)DE-He213 North Xinjiang (dpeaa)DE-He213 Wang, Qiang verfasserin aut Xiong, Xiaolin verfasserin aut Niu, Hecai verfasserin aut Zhang, Haixiang verfasserin aut Qiao, Yulou verfasserin aut Enthalten in Geologische Rundschau Berlin : Springer, 1910 98(2008), 6 vom: 09. Aug. (DE-627)47265019X (DE-600)2168407-8 1432-1149 nnns volume:98 year:2008 number:6 day:09 month:08 https://dx.doi.org/10.1007/s00531-008-0339-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 38.10 ASE AR 98 2008 6 09 08 |
allfields_unstemmed |
10.1007/s00531-008-0339-7 doi (DE-627)SPR006716555 (SPR)s00531-008-0339-7-e DE-627 ger DE-627 rakwb eng 550 ASE 38.10 bkl Zhao, Zhenhua verfasserin aut Magnesian andesites in north Xinjiang, China 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. Magnesian andesites (dpeaa)DE-He213 Metasomatism of slab melts (dpeaa)DE-He213 Subduction erosion (dpeaa)DE-He213 Asthenosphere window (dpeaa)DE-He213 North Xinjiang (dpeaa)DE-He213 Wang, Qiang verfasserin aut Xiong, Xiaolin verfasserin aut Niu, Hecai verfasserin aut Zhang, Haixiang verfasserin aut Qiao, Yulou verfasserin aut Enthalten in Geologische Rundschau Berlin : Springer, 1910 98(2008), 6 vom: 09. Aug. (DE-627)47265019X (DE-600)2168407-8 1432-1149 nnns volume:98 year:2008 number:6 day:09 month:08 https://dx.doi.org/10.1007/s00531-008-0339-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 38.10 ASE AR 98 2008 6 09 08 |
allfieldsGer |
10.1007/s00531-008-0339-7 doi (DE-627)SPR006716555 (SPR)s00531-008-0339-7-e DE-627 ger DE-627 rakwb eng 550 ASE 38.10 bkl Zhao, Zhenhua verfasserin aut Magnesian andesites in north Xinjiang, China 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. Magnesian andesites (dpeaa)DE-He213 Metasomatism of slab melts (dpeaa)DE-He213 Subduction erosion (dpeaa)DE-He213 Asthenosphere window (dpeaa)DE-He213 North Xinjiang (dpeaa)DE-He213 Wang, Qiang verfasserin aut Xiong, Xiaolin verfasserin aut Niu, Hecai verfasserin aut Zhang, Haixiang verfasserin aut Qiao, Yulou verfasserin aut Enthalten in Geologische Rundschau Berlin : Springer, 1910 98(2008), 6 vom: 09. Aug. (DE-627)47265019X (DE-600)2168407-8 1432-1149 nnns volume:98 year:2008 number:6 day:09 month:08 https://dx.doi.org/10.1007/s00531-008-0339-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 38.10 ASE AR 98 2008 6 09 08 |
allfieldsSound |
10.1007/s00531-008-0339-7 doi (DE-627)SPR006716555 (SPR)s00531-008-0339-7-e DE-627 ger DE-627 rakwb eng 550 ASE 38.10 bkl Zhao, Zhenhua verfasserin aut Magnesian andesites in north Xinjiang, China 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. Magnesian andesites (dpeaa)DE-He213 Metasomatism of slab melts (dpeaa)DE-He213 Subduction erosion (dpeaa)DE-He213 Asthenosphere window (dpeaa)DE-He213 North Xinjiang (dpeaa)DE-He213 Wang, Qiang verfasserin aut Xiong, Xiaolin verfasserin aut Niu, Hecai verfasserin aut Zhang, Haixiang verfasserin aut Qiao, Yulou verfasserin aut Enthalten in Geologische Rundschau Berlin : Springer, 1910 98(2008), 6 vom: 09. Aug. (DE-627)47265019X (DE-600)2168407-8 1432-1149 nnns volume:98 year:2008 number:6 day:09 month:08 https://dx.doi.org/10.1007/s00531-008-0339-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 38.10 ASE AR 98 2008 6 09 08 |
language |
English |
source |
Enthalten in Geologische Rundschau 98(2008), 6 vom: 09. Aug. volume:98 year:2008 number:6 day:09 month:08 |
sourceStr |
Enthalten in Geologische Rundschau 98(2008), 6 vom: 09. Aug. volume:98 year:2008 number:6 day:09 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Magnesian andesites Metasomatism of slab melts Subduction erosion Asthenosphere window North Xinjiang |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Geologische Rundschau |
authorswithroles_txt_mv |
Zhao, Zhenhua @@aut@@ Wang, Qiang @@aut@@ Xiong, Xiaolin @@aut@@ Niu, Hecai @@aut@@ Zhang, Haixiang @@aut@@ Qiao, Yulou @@aut@@ |
publishDateDaySort_date |
2008-08-09T00:00:00Z |
hierarchy_top_id |
47265019X |
dewey-sort |
3550 |
id |
SPR006716555 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006716555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110191453.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00531-008-0339-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006716555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00531-008-0339-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Zhenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnesian andesites in north Xinjiang, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesian andesites</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metasomatism of slab melts</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subduction erosion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asthenosphere window</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">North Xinjiang</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Xiaolin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Hecai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Haixiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Yulou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geologische Rundschau</subfield><subfield code="d">Berlin : Springer, 1910</subfield><subfield code="g">98(2008), 6 vom: 09. Aug.</subfield><subfield code="w">(DE-627)47265019X</subfield><subfield code="w">(DE-600)2168407-8</subfield><subfield code="x">1432-1149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:6</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00531-008-0339-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.10</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield><subfield code="j">2008</subfield><subfield code="e">6</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Zhao, Zhenhua |
spellingShingle |
Zhao, Zhenhua ddc 550 bkl 38.10 misc Magnesian andesites misc Metasomatism of slab melts misc Subduction erosion misc Asthenosphere window misc North Xinjiang Magnesian andesites in north Xinjiang, China |
authorStr |
Zhao, Zhenhua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)47265019X |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1432-1149 |
topic_title |
550 ASE 38.10 bkl Magnesian andesites in north Xinjiang, China Magnesian andesites (dpeaa)DE-He213 Metasomatism of slab melts (dpeaa)DE-He213 Subduction erosion (dpeaa)DE-He213 Asthenosphere window (dpeaa)DE-He213 North Xinjiang (dpeaa)DE-He213 |
topic |
ddc 550 bkl 38.10 misc Magnesian andesites misc Metasomatism of slab melts misc Subduction erosion misc Asthenosphere window misc North Xinjiang |
topic_unstemmed |
ddc 550 bkl 38.10 misc Magnesian andesites misc Metasomatism of slab melts misc Subduction erosion misc Asthenosphere window misc North Xinjiang |
topic_browse |
ddc 550 bkl 38.10 misc Magnesian andesites misc Metasomatism of slab melts misc Subduction erosion misc Asthenosphere window misc North Xinjiang |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geologische Rundschau |
hierarchy_parent_id |
47265019X |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Geologische Rundschau |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)47265019X (DE-600)2168407-8 |
title |
Magnesian andesites in north Xinjiang, China |
ctrlnum |
(DE-627)SPR006716555 (SPR)s00531-008-0339-7-e |
title_full |
Magnesian andesites in north Xinjiang, China |
author_sort |
Zhao, Zhenhua |
journal |
Geologische Rundschau |
journalStr |
Geologische Rundschau |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
author_browse |
Zhao, Zhenhua Wang, Qiang Xiong, Xiaolin Niu, Hecai Zhang, Haixiang Qiao, Yulou |
container_volume |
98 |
class |
550 ASE 38.10 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhao, Zhenhua |
doi_str_mv |
10.1007/s00531-008-0339-7 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
magnesian andesites in north xinjiang, china |
title_auth |
Magnesian andesites in north Xinjiang, China |
abstract |
Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. |
abstractGer |
Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. |
abstract_unstemmed |
Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_647 GBV_ILN_702 |
container_issue |
6 |
title_short |
Magnesian andesites in north Xinjiang, China |
url |
https://dx.doi.org/10.1007/s00531-008-0339-7 |
remote_bool |
true |
author2 |
Wang, Qiang Xiong, Xiaolin Niu, Hecai Zhang, Haixiang Qiao, Yulou |
author2Str |
Wang, Qiang Xiong, Xiaolin Niu, Hecai Zhang, Haixiang Qiao, Yulou |
ppnlink |
47265019X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00531-008-0339-7 |
up_date |
2024-07-04T00:19:58.981Z |
_version_ |
1803605664315998208 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR006716555</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110191453.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00531-008-0339-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR006716555</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s00531-008-0339-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.10</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Zhenhua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnesian andesites in north Xinjiang, China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Middle Devonian magnesian andesites (MAs) are widely distributed in south Altay and Carboniferous MAs are present in Alataoshan and west- and east-Tianshan in the north Xinjiang region. These MAs are andesitic rocks with 53–65% $ SiO_{2} $,<1% (0.21–1.08%; average of 0.72%) $ TiO_{2} $, and ≥50 $ Mg^{#} $. Magnesian dacites and diorites, with 52.38–66.91% $ SiO_{2} $, <0.30% $ TiO_{2} $ and ≥42 $ Mg^{#} $ commonly occur with these MAs. Relative to boninites, MAs have lower MgO contents (average 6.39%) but higher Ti, K and Na. They have characteristic flat chondrite-normalized REE patterns with weak to no Eu anomalies (Eu depletion, or Eu/Eu* = 0.65–1.15), low (La/Yb)N (0.98–6.4, mostly 4±) and low total REE contents (15–95 ppm). They also have high contents of compatible elements Cr and Ni (72–790 and 29–276 ppm, respectively). Their relative depletion in high field strength elements Nb, Ta and Ti, and relative enrichment in mobile large-ion lithophile elements Rb, K and Pb are evident on primitive mantle-normalized trace element spidergrams. If magnesian andesites are melts coming from the subducted oceanic crust, as proposed elsewhere, then the relatively high Y contents (>15 ppm), low Sr/Y ratios (4.4–6.2), low (La/Yb)N, and high $ Mg^{#} $ of the MAs in north Xinjiang provide evidence of interaction of such melts with mantle wedge peridotite. New petrographic, chemical and isotopic [(143Nd/144Nd)I = 0.51221–0.51255 (εNd(t) +0.28 to +7.2); (87Sr/86Sr)I = 0.7029–0.7065] data suggest that the petrogenesis of the MAs in the north Xinjiang region may have involved: (1) multiple source materials including subducted oceanic slab, juvenile crustal materials (mainly volcanic-volcanoclassic rocks with low maturity and clear mantle geochemical signatures) coming from the forearc accretionary prism and mantle wedge peridotite; (2) a combination of different petrogenetic processes including partial melting of subducted oceanic slab and juvenile crustal materials, followed by interaction of slab melts with the mantle wedge peridotite; (3) high geothermal gradient creating a high temperature (>1,000°C) environment in a volatile-rich source region; (4) unique tectonic settings including oblique subduction, slab break off resulting in slab window formation and asthenosphere upwelling, and subduction erosion resulting in transfer of forearc accretionary materials into the source region of MA magma.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnesian andesites</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metasomatism of slab melts</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subduction erosion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asthenosphere window</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">North Xinjiang</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Qiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiong, Xiaolin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Niu, Hecai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Haixiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Yulou</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geologische Rundschau</subfield><subfield code="d">Berlin : Springer, 1910</subfield><subfield code="g">98(2008), 6 vom: 09. Aug.</subfield><subfield code="w">(DE-627)47265019X</subfield><subfield code="w">(DE-600)2168407-8</subfield><subfield code="x">1432-1149</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:98</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:6</subfield><subfield code="g">day:09</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s00531-008-0339-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_647</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.10</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">98</subfield><subfield code="j">2008</subfield><subfield code="e">6</subfield><subfield code="b">09</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4015055 |