Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis
Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed,...
Ausführliche Beschreibung
Autor*in: |
Srivastava, Meera [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
1999 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Picower Institute Press 1999 |
---|
Übergeordnetes Werk: |
Enthalten in: Molecular medicine - [London] : BioMed Central, 1994, 5(1999), 11 vom: 01. Nov., Seite 753-767 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:1999 ; number:11 ; day:01 ; month:11 ; pages:753-767 |
Links: |
---|
DOI / URN: |
10.1007/BF03402099 |
---|
Katalog-ID: |
SPR00805634X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR00805634X | ||
003 | DE-627 | ||
005 | 20240222091155.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s1999 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/BF03402099 |2 doi | |
035 | |a (DE-627)SPR00805634X | ||
035 | |a (SPR)BF03402099-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Srivastava, Meera |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis |
264 | 1 | |c 1999 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Picower Institute Press 1999 | ||
520 | |a Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. | ||
650 | 4 | |a Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wild-type CFTR |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mutant CFTR |7 (dpeaa)DE-He213 | |
650 | 4 | |a ΔF508 CFTR |7 (dpeaa)DE-He213 | |
650 | 4 | |a Activate CFTR Channels |7 (dpeaa)DE-He213 | |
700 | 1 | |a Eidelman, Ofer |4 aut | |
700 | 1 | |a Pollard, Harvey B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Molecular medicine |d [London] : BioMed Central, 1994 |g 5(1999), 11 vom: 01. Nov., Seite 753-767 |w (DE-627)269539611 |w (DE-600)1475577-4 |x 1528-3658 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:1999 |g number:11 |g day:01 |g month:11 |g pages:753-767 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/BF03402099 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 5 |j 1999 |e 11 |b 01 |c 11 |h 753-767 |
author_variant |
m s ms o e oe h b p hb hbp |
---|---|
matchkey_str |
article:15283658:1999----::hraoeoisfhcsifboitasebaeodcacrgltrfrnteytcirssrg |
hierarchy_sort_str |
1999 |
publishDate |
1999 |
allfields |
10.1007/BF03402099 doi (DE-627)SPR00805634X (SPR)BF03402099-e DE-627 ger DE-627 rakwb eng Srivastava, Meera verfasserin aut Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Picower Institute Press 1999 Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (dpeaa)DE-He213 Wild-type CFTR (dpeaa)DE-He213 Mutant CFTR (dpeaa)DE-He213 ΔF508 CFTR (dpeaa)DE-He213 Activate CFTR Channels (dpeaa)DE-He213 Eidelman, Ofer aut Pollard, Harvey B. aut Enthalten in Molecular medicine [London] : BioMed Central, 1994 5(1999), 11 vom: 01. Nov., Seite 753-767 (DE-627)269539611 (DE-600)1475577-4 1528-3658 nnns volume:5 year:1999 number:11 day:01 month:11 pages:753-767 https://dx.doi.org/10.1007/BF03402099 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 1999 11 01 11 753-767 |
spelling |
10.1007/BF03402099 doi (DE-627)SPR00805634X (SPR)BF03402099-e DE-627 ger DE-627 rakwb eng Srivastava, Meera verfasserin aut Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Picower Institute Press 1999 Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (dpeaa)DE-He213 Wild-type CFTR (dpeaa)DE-He213 Mutant CFTR (dpeaa)DE-He213 ΔF508 CFTR (dpeaa)DE-He213 Activate CFTR Channels (dpeaa)DE-He213 Eidelman, Ofer aut Pollard, Harvey B. aut Enthalten in Molecular medicine [London] : BioMed Central, 1994 5(1999), 11 vom: 01. Nov., Seite 753-767 (DE-627)269539611 (DE-600)1475577-4 1528-3658 nnns volume:5 year:1999 number:11 day:01 month:11 pages:753-767 https://dx.doi.org/10.1007/BF03402099 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 1999 11 01 11 753-767 |
allfields_unstemmed |
10.1007/BF03402099 doi (DE-627)SPR00805634X (SPR)BF03402099-e DE-627 ger DE-627 rakwb eng Srivastava, Meera verfasserin aut Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Picower Institute Press 1999 Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (dpeaa)DE-He213 Wild-type CFTR (dpeaa)DE-He213 Mutant CFTR (dpeaa)DE-He213 ΔF508 CFTR (dpeaa)DE-He213 Activate CFTR Channels (dpeaa)DE-He213 Eidelman, Ofer aut Pollard, Harvey B. aut Enthalten in Molecular medicine [London] : BioMed Central, 1994 5(1999), 11 vom: 01. Nov., Seite 753-767 (DE-627)269539611 (DE-600)1475577-4 1528-3658 nnns volume:5 year:1999 number:11 day:01 month:11 pages:753-767 https://dx.doi.org/10.1007/BF03402099 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 1999 11 01 11 753-767 |
allfieldsGer |
10.1007/BF03402099 doi (DE-627)SPR00805634X (SPR)BF03402099-e DE-627 ger DE-627 rakwb eng Srivastava, Meera verfasserin aut Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Picower Institute Press 1999 Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (dpeaa)DE-He213 Wild-type CFTR (dpeaa)DE-He213 Mutant CFTR (dpeaa)DE-He213 ΔF508 CFTR (dpeaa)DE-He213 Activate CFTR Channels (dpeaa)DE-He213 Eidelman, Ofer aut Pollard, Harvey B. aut Enthalten in Molecular medicine [London] : BioMed Central, 1994 5(1999), 11 vom: 01. Nov., Seite 753-767 (DE-627)269539611 (DE-600)1475577-4 1528-3658 nnns volume:5 year:1999 number:11 day:01 month:11 pages:753-767 https://dx.doi.org/10.1007/BF03402099 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 1999 11 01 11 753-767 |
allfieldsSound |
10.1007/BF03402099 doi (DE-627)SPR00805634X (SPR)BF03402099-e DE-627 ger DE-627 rakwb eng Srivastava, Meera verfasserin aut Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis 1999 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Picower Institute Press 1999 Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (dpeaa)DE-He213 Wild-type CFTR (dpeaa)DE-He213 Mutant CFTR (dpeaa)DE-He213 ΔF508 CFTR (dpeaa)DE-He213 Activate CFTR Channels (dpeaa)DE-He213 Eidelman, Ofer aut Pollard, Harvey B. aut Enthalten in Molecular medicine [London] : BioMed Central, 1994 5(1999), 11 vom: 01. Nov., Seite 753-767 (DE-627)269539611 (DE-600)1475577-4 1528-3658 nnns volume:5 year:1999 number:11 day:01 month:11 pages:753-767 https://dx.doi.org/10.1007/BF03402099 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 5 1999 11 01 11 753-767 |
language |
English |
source |
Enthalten in Molecular medicine 5(1999), 11 vom: 01. Nov., Seite 753-767 volume:5 year:1999 number:11 day:01 month:11 pages:753-767 |
sourceStr |
Enthalten in Molecular medicine 5(1999), 11 vom: 01. Nov., Seite 753-767 volume:5 year:1999 number:11 day:01 month:11 pages:753-767 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Wild-type CFTR Mutant CFTR ΔF508 CFTR Activate CFTR Channels |
isfreeaccess_bool |
false |
container_title |
Molecular medicine |
authorswithroles_txt_mv |
Srivastava, Meera @@aut@@ Eidelman, Ofer @@aut@@ Pollard, Harvey B. @@aut@@ |
publishDateDaySort_date |
1999-11-01T00:00:00Z |
hierarchy_top_id |
269539611 |
id |
SPR00805634X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00805634X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222091155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03402099</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00805634X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03402099-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srivastava, Meera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Picower Institute Press 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wild-type CFTR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutant CFTR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ΔF508 CFTR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activate CFTR Channels</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eidelman, Ofer</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pollard, Harvey B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular medicine</subfield><subfield code="d">[London] : BioMed Central, 1994</subfield><subfield code="g">5(1999), 11 vom: 01. Nov., Seite 753-767</subfield><subfield code="w">(DE-627)269539611</subfield><subfield code="w">(DE-600)1475577-4</subfield><subfield code="x">1528-3658</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:11</subfield><subfield code="g">day:01</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:753-767</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03402099</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">1999</subfield><subfield code="e">11</subfield><subfield code="b">01</subfield><subfield code="c">11</subfield><subfield code="h">753-767</subfield></datafield></record></collection>
|
author |
Srivastava, Meera |
spellingShingle |
Srivastava, Meera misc Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) misc Wild-type CFTR misc Mutant CFTR misc ΔF508 CFTR misc Activate CFTR Channels Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis |
authorStr |
Srivastava, Meera |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269539611 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1528-3658 |
topic_title |
Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (dpeaa)DE-He213 Wild-type CFTR (dpeaa)DE-He213 Mutant CFTR (dpeaa)DE-He213 ΔF508 CFTR (dpeaa)DE-He213 Activate CFTR Channels (dpeaa)DE-He213 |
topic |
misc Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) misc Wild-type CFTR misc Mutant CFTR misc ΔF508 CFTR misc Activate CFTR Channels |
topic_unstemmed |
misc Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) misc Wild-type CFTR misc Mutant CFTR misc ΔF508 CFTR misc Activate CFTR Channels |
topic_browse |
misc Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) misc Wild-type CFTR misc Mutant CFTR misc ΔF508 CFTR misc Activate CFTR Channels |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Molecular medicine |
hierarchy_parent_id |
269539611 |
hierarchy_top_title |
Molecular medicine |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)269539611 (DE-600)1475577-4 |
title |
Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis |
ctrlnum |
(DE-627)SPR00805634X (SPR)BF03402099-e |
title_full |
Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis |
author_sort |
Srivastava, Meera |
journal |
Molecular medicine |
journalStr |
Molecular medicine |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
1999 |
contenttype_str_mv |
txt |
container_start_page |
753 |
author_browse |
Srivastava, Meera Eidelman, Ofer Pollard, Harvey B. |
container_volume |
5 |
format_se |
Elektronische Aufsätze |
author-letter |
Srivastava, Meera |
doi_str_mv |
10.1007/BF03402099 |
title_sort |
pharmacogenomics of the cystic fibrosis transmembrane conductance regulator (cftr) and the cystic fibrosis drug cpx using genome microarray analysis |
title_auth |
Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis |
abstract |
Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. © Picower Institute Press 1999 |
abstractGer |
Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. © Picower Institute Press 1999 |
abstract_unstemmed |
Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration. © Picower Institute Press 1999 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
11 |
title_short |
Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis |
url |
https://dx.doi.org/10.1007/BF03402099 |
remote_bool |
true |
author2 |
Eidelman, Ofer Pollard, Harvey B. |
author2Str |
Eidelman, Ofer Pollard, Harvey B. |
ppnlink |
269539611 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/BF03402099 |
up_date |
2024-07-03T17:02:10.053Z |
_version_ |
1803578119355891712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00805634X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240222091155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s1999 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/BF03402099</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00805634X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)BF03402099-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Srivastava, Meera</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pharmacogenomics of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and the Cystic Fibrosis Drug CPX Using Genome Microarray Analysis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">1999</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Picower Institute Press 1999</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Cystic fibrosis (CF) is the most common lethal recessive disease affecting children in the U.S. and Europe. For this reason, a number of ongoing attempts are being made to treat the disease either by gene therapy or pharmacotherapy. Several phase 1 gene therapy trials have been completed, and a phase 2 clinical trial with the xanthine drug CPX is in progress. The protein coded by the principal CFTR mutation, ΔF508-CFTR, fails to traffic efficiently from the endoplasmic reticulum to the plasma membrane, and is the pathogenic basis for the missing cAMP-activated plasma membrane chloride channel. CPX acts by binding to the mutant ΔF508-CFTR and correcting the trafficking deficit. CPX also activates mutant CFTR channels. The comparative genomics of wild-type and mutant CFTR has not previously been studied. However, we have hypothesized that the gene expression patterns of human cells expressing mutant or wild-type CFTR might differ, and that a drug such as CPX might convert the mutant gene expression pattern into one more characteristic of wild-type CFTR. To the extent that this is true, a pharmacogenomic profile for such corrective drugs might be deduced that could simplify the process of drug discovery for CF. Materials and Methods To test this hypothesis we used cDNA microarrays to study global gene expression in human cells permanently transfected with either wild-type or mutant CFTR. We also tested the effects of CPX on global gene expression when incubated with cells expressing either mutant or wild-type CFTR. Results Wild-type and mutant ΔF508-CFTR induce distinct and differential changes in cDNA microarrays, significantly affecting up to 5% of the total genes in the array. CPX also induces substantial mutation-dependent and -independent changes in gene expression. Some of these changes involve movement of gene expression in mutant cells in a direction resembling expression in wild-type cells. Conclusions These data clearly demonstrate that cDNA array analysis of cystic fibrosis cells can yield useful pharmacogenomic information with significant relevance to both gene and pharmacological therapy. We suggest that this approach may provide a paradigm for genome-based surrogate endpoint testing of CF therapeutics prior to human administration.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cystic Fibrosis Transmembrane Conductance Regulator (CFTR)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wild-type CFTR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mutant CFTR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ΔF508 CFTR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Activate CFTR Channels</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eidelman, Ofer</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pollard, Harvey B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Molecular medicine</subfield><subfield code="d">[London] : BioMed Central, 1994</subfield><subfield code="g">5(1999), 11 vom: 01. Nov., Seite 753-767</subfield><subfield code="w">(DE-627)269539611</subfield><subfield code="w">(DE-600)1475577-4</subfield><subfield code="x">1528-3658</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:1999</subfield><subfield code="g">number:11</subfield><subfield code="g">day:01</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:753-767</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/BF03402099</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">1999</subfield><subfield code="e">11</subfield><subfield code="b">01</subfield><subfield code="c">11</subfield><subfield code="h">753-767</subfield></datafield></record></collection>
|
score |
7.4021635 |