Hawking radiation of Dirac particles from the Myers–Perry black hole
Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermion...
Ausführliche Beschreibung
Autor*in: |
Mao, Pu-Jian [verfasserIn] Li, Ran [verfasserIn] Jia, Lin-Yu [verfasserIn] Ren, Ji-Rong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: The European physical journal - Berlin : Springer, 1998, 71(2011), 1 vom: 15. Jan. |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2011 ; number:1 ; day:15 ; month:01 |
Links: |
---|
DOI / URN: |
10.1140/epjc/s10052-010-1527-8 |
---|
Katalog-ID: |
SPR008323291 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR008323291 | ||
003 | DE-627 | ||
005 | 20220110201722.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1140/epjc/s10052-010-1527-8 |2 doi | |
035 | |a (DE-627)SPR008323291 | ||
035 | |a (SPR)s10052-010-1527-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q ASE |
084 | |a 33.50 |2 bkl | ||
100 | 1 | |a Mao, Pu-Jian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hawking radiation of Dirac particles from the Myers–Perry black hole |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. | ||
650 | 4 | |a Black Hole |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quantum Gravity |7 (dpeaa)DE-He213 | |
650 | 4 | |a Event Horizon |7 (dpeaa)DE-He213 | |
650 | 4 | |a Effective Action |7 (dpeaa)DE-He213 | |
650 | 4 | |a High Energy Phys |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Ran |e verfasserin |4 aut | |
700 | 1 | |a Jia, Lin-Yu |e verfasserin |4 aut | |
700 | 1 | |a Ren, Ji-Rong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The European physical journal |d Berlin : Springer, 1998 |g 71(2011), 1 vom: 15. Jan. |w (DE-627)253722934 |w (DE-600)1459069-4 |x 1434-6052 |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2011 |g number:1 |g day:15 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4338 | ||
936 | b | k | |a 33.50 |q ASE |
951 | |a AR | ||
952 | |d 71 |j 2011 |e 1 |b 15 |c 01 |
author_variant |
p j m pjm r l rl l y j lyj j r r jrr |
---|---|
matchkey_str |
article:14346052:2011----::aknrdainfiaprilsrmhme |
hierarchy_sort_str |
2011 |
bklnumber |
33.50 |
publishDate |
2011 |
allfields |
10.1140/epjc/s10052-010-1527-8 doi (DE-627)SPR008323291 (SPR)s10052-010-1527-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.50 bkl Mao, Pu-Jian verfasserin aut Hawking radiation of Dirac particles from the Myers–Perry black hole 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. Black Hole (dpeaa)DE-He213 Quantum Gravity (dpeaa)DE-He213 Event Horizon (dpeaa)DE-He213 Effective Action (dpeaa)DE-He213 High Energy Phys (dpeaa)DE-He213 Li, Ran verfasserin aut Jia, Lin-Yu verfasserin aut Ren, Ji-Rong verfasserin aut Enthalten in The European physical journal Berlin : Springer, 1998 71(2011), 1 vom: 15. Jan. (DE-627)253722934 (DE-600)1459069-4 1434-6052 nnns volume:71 year:2011 number:1 day:15 month:01 https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_267 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4338 33.50 ASE AR 71 2011 1 15 01 |
spelling |
10.1140/epjc/s10052-010-1527-8 doi (DE-627)SPR008323291 (SPR)s10052-010-1527-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.50 bkl Mao, Pu-Jian verfasserin aut Hawking radiation of Dirac particles from the Myers–Perry black hole 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. Black Hole (dpeaa)DE-He213 Quantum Gravity (dpeaa)DE-He213 Event Horizon (dpeaa)DE-He213 Effective Action (dpeaa)DE-He213 High Energy Phys (dpeaa)DE-He213 Li, Ran verfasserin aut Jia, Lin-Yu verfasserin aut Ren, Ji-Rong verfasserin aut Enthalten in The European physical journal Berlin : Springer, 1998 71(2011), 1 vom: 15. Jan. (DE-627)253722934 (DE-600)1459069-4 1434-6052 nnns volume:71 year:2011 number:1 day:15 month:01 https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_267 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4338 33.50 ASE AR 71 2011 1 15 01 |
allfields_unstemmed |
10.1140/epjc/s10052-010-1527-8 doi (DE-627)SPR008323291 (SPR)s10052-010-1527-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.50 bkl Mao, Pu-Jian verfasserin aut Hawking radiation of Dirac particles from the Myers–Perry black hole 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. Black Hole (dpeaa)DE-He213 Quantum Gravity (dpeaa)DE-He213 Event Horizon (dpeaa)DE-He213 Effective Action (dpeaa)DE-He213 High Energy Phys (dpeaa)DE-He213 Li, Ran verfasserin aut Jia, Lin-Yu verfasserin aut Ren, Ji-Rong verfasserin aut Enthalten in The European physical journal Berlin : Springer, 1998 71(2011), 1 vom: 15. Jan. (DE-627)253722934 (DE-600)1459069-4 1434-6052 nnns volume:71 year:2011 number:1 day:15 month:01 https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_267 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4338 33.50 ASE AR 71 2011 1 15 01 |
allfieldsGer |
10.1140/epjc/s10052-010-1527-8 doi (DE-627)SPR008323291 (SPR)s10052-010-1527-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.50 bkl Mao, Pu-Jian verfasserin aut Hawking radiation of Dirac particles from the Myers–Perry black hole 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. Black Hole (dpeaa)DE-He213 Quantum Gravity (dpeaa)DE-He213 Event Horizon (dpeaa)DE-He213 Effective Action (dpeaa)DE-He213 High Energy Phys (dpeaa)DE-He213 Li, Ran verfasserin aut Jia, Lin-Yu verfasserin aut Ren, Ji-Rong verfasserin aut Enthalten in The European physical journal Berlin : Springer, 1998 71(2011), 1 vom: 15. Jan. (DE-627)253722934 (DE-600)1459069-4 1434-6052 nnns volume:71 year:2011 number:1 day:15 month:01 https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_267 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4338 33.50 ASE AR 71 2011 1 15 01 |
allfieldsSound |
10.1140/epjc/s10052-010-1527-8 doi (DE-627)SPR008323291 (SPR)s10052-010-1527-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.50 bkl Mao, Pu-Jian verfasserin aut Hawking radiation of Dirac particles from the Myers–Perry black hole 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. Black Hole (dpeaa)DE-He213 Quantum Gravity (dpeaa)DE-He213 Event Horizon (dpeaa)DE-He213 Effective Action (dpeaa)DE-He213 High Energy Phys (dpeaa)DE-He213 Li, Ran verfasserin aut Jia, Lin-Yu verfasserin aut Ren, Ji-Rong verfasserin aut Enthalten in The European physical journal Berlin : Springer, 1998 71(2011), 1 vom: 15. Jan. (DE-627)253722934 (DE-600)1459069-4 1434-6052 nnns volume:71 year:2011 number:1 day:15 month:01 https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_267 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4338 33.50 ASE AR 71 2011 1 15 01 |
language |
English |
source |
Enthalten in The European physical journal 71(2011), 1 vom: 15. Jan. volume:71 year:2011 number:1 day:15 month:01 |
sourceStr |
Enthalten in The European physical journal 71(2011), 1 vom: 15. Jan. volume:71 year:2011 number:1 day:15 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Black Hole Quantum Gravity Event Horizon Effective Action High Energy Phys |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
The European physical journal |
authorswithroles_txt_mv |
Mao, Pu-Jian @@aut@@ Li, Ran @@aut@@ Jia, Lin-Yu @@aut@@ Ren, Ji-Rong @@aut@@ |
publishDateDaySort_date |
2011-01-15T00:00:00Z |
hierarchy_top_id |
253722934 |
dewey-sort |
3530 |
id |
SPR008323291 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008323291</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110201722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epjc/s10052-010-1527-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008323291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10052-010-1527-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mao, Pu-Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hawking radiation of Dirac particles from the Myers–Perry black hole</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black Hole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Gravity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Event Horizon</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective Action</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Phys</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Lin-Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Ji-Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal</subfield><subfield code="d">Berlin : Springer, 1998</subfield><subfield code="g">71(2011), 1 vom: 15. Jan.</subfield><subfield code="w">(DE-627)253722934</subfield><subfield code="w">(DE-600)1459069-4</subfield><subfield code="x">1434-6052</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1140/epjc/s10052-010-1527-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Mao, Pu-Jian |
spellingShingle |
Mao, Pu-Jian ddc 530 bkl 33.50 misc Black Hole misc Quantum Gravity misc Event Horizon misc Effective Action misc High Energy Phys Hawking radiation of Dirac particles from the Myers–Perry black hole |
authorStr |
Mao, Pu-Jian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)253722934 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1434-6052 |
topic_title |
530 ASE 33.50 bkl Hawking radiation of Dirac particles from the Myers–Perry black hole Black Hole (dpeaa)DE-He213 Quantum Gravity (dpeaa)DE-He213 Event Horizon (dpeaa)DE-He213 Effective Action (dpeaa)DE-He213 High Energy Phys (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.50 misc Black Hole misc Quantum Gravity misc Event Horizon misc Effective Action misc High Energy Phys |
topic_unstemmed |
ddc 530 bkl 33.50 misc Black Hole misc Quantum Gravity misc Event Horizon misc Effective Action misc High Energy Phys |
topic_browse |
ddc 530 bkl 33.50 misc Black Hole misc Quantum Gravity misc Event Horizon misc Effective Action misc High Energy Phys |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
The European physical journal |
hierarchy_parent_id |
253722934 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
The European physical journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)253722934 (DE-600)1459069-4 |
title |
Hawking radiation of Dirac particles from the Myers–Perry black hole |
ctrlnum |
(DE-627)SPR008323291 (SPR)s10052-010-1527-8-e |
title_full |
Hawking radiation of Dirac particles from the Myers–Perry black hole |
author_sort |
Mao, Pu-Jian |
journal |
The European physical journal |
journalStr |
The European physical journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Mao, Pu-Jian Li, Ran Jia, Lin-Yu Ren, Ji-Rong |
container_volume |
71 |
class |
530 ASE 33.50 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mao, Pu-Jian |
doi_str_mv |
10.1140/epjc/s10052-010-1527-8 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
hawking radiation of dirac particles from the myers–perry black hole |
title_auth |
Hawking radiation of Dirac particles from the Myers–Perry black hole |
abstract |
Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. |
abstractGer |
Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. |
abstract_unstemmed |
Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_267 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2153 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4012 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4246 GBV_ILN_4305 GBV_ILN_4307 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4338 |
container_issue |
1 |
title_short |
Hawking radiation of Dirac particles from the Myers–Perry black hole |
url |
https://dx.doi.org/10.1140/epjc/s10052-010-1527-8 |
remote_bool |
true |
author2 |
Li, Ran Jia, Lin-Yu Ren, Ji-Rong |
author2Str |
Li, Ran Jia, Lin-Yu Ren, Ji-Rong |
ppnlink |
253722934 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1140/epjc/s10052-010-1527-8 |
up_date |
2024-07-03T18:43:31.350Z |
_version_ |
1803584496049586176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008323291</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110201722.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1140/epjc/s10052-010-1527-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008323291</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10052-010-1527-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.50</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mao, Pu-Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hawking radiation of Dirac particles from the Myers–Perry black hole</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we apply the quantum anomaly cancelation method and the effective action approach as well as the method of Damour–Ruffini–Sannan to derive Hawking radiation of Dirac particles from the Myers–Perry black hole. Using the dimensional reduction technique, we find that the fermionic field in the background of the Myers–Perry black hole can be treated as an infinite collection of quantum fields in (1+1)-dimensional background coupled with the dilaton field and the U(1) gauge field near the horizon. Thus Hawking temperature and fluxes are found. The Hawking temperature obtained agrees with the surface gravity formula while the Hawking fluxes derived from the anomaly cancelation method and the effective action approach are in complete agreement with the ones obtained from integrating the Planck distribution.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Black Hole</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Gravity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Event Horizon</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Effective Action</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Energy Phys</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Ran</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jia, Lin-Yu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Ji-Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The European physical journal</subfield><subfield code="d">Berlin : Springer, 1998</subfield><subfield code="g">71(2011), 1 vom: 15. Jan.</subfield><subfield code="w">(DE-627)253722934</subfield><subfield code="w">(DE-600)1459069-4</subfield><subfield code="x">1434-6052</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:15</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1140/epjc/s10052-010-1527-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.50</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">15</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.403078 |