Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine
Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical...
Ausführliche Beschreibung
Autor*in: |
Kanniche, Mohamed [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Clean Products and Processes - Springer-Verlag, 2001, 12(2010), 6 vom: 22. Apr., Seite 661-670 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2010 ; number:6 ; day:22 ; month:04 ; pages:661-670 |
Links: |
---|
DOI / URN: |
10.1007/s10098-010-0293-5 |
---|
Katalog-ID: |
SPR008716803 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR008716803 | ||
003 | DE-627 | ||
005 | 20230519093317.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10098-010-0293-5 |2 doi | |
035 | |a (DE-627)SPR008716803 | ||
035 | |a (SPR)s10098-010-0293-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kanniche, Mohamed |e verfasserin |4 aut | |
245 | 1 | 0 | |a Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. | ||
650 | 4 | |a Gas turbine |7 (dpeaa)DE-He213 | |
650 | 4 | |a NO |7 (dpeaa)DE-He213 | |
650 | 4 | |a CO |7 (dpeaa)DE-He213 | |
650 | 4 | |a Chemical reactor network |7 (dpeaa)DE-He213 | |
650 | 4 | |a Jet-stirred reactor |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Clean Products and Processes |d Springer-Verlag, 2001 |g 12(2010), 6 vom: 22. Apr., Seite 661-670 |w (DE-627)SPR008711836 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2010 |g number:6 |g day:22 |g month:04 |g pages:661-670 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10098-010-0293-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
951 | |a AR | ||
952 | |d 12 |j 2010 |e 6 |b 22 |c 04 |h 661-670 |
author_variant |
m k mk |
---|---|
matchkey_str |
kannichemohamed:2010----:opigfwtceiaratrewrfrdacdoxr |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1007/s10098-010-0293-5 doi (DE-627)SPR008716803 (SPR)s10098-010-0293-5-e DE-627 ger DE-627 rakwb eng Kanniche, Mohamed verfasserin aut Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. Gas turbine (dpeaa)DE-He213 NO (dpeaa)DE-He213 CO (dpeaa)DE-He213 Chemical reactor network (dpeaa)DE-He213 Jet-stirred reactor (dpeaa)DE-He213 Enthalten in Clean Products and Processes Springer-Verlag, 2001 12(2010), 6 vom: 22. Apr., Seite 661-670 (DE-627)SPR008711836 nnns volume:12 year:2010 number:6 day:22 month:04 pages:661-670 https://dx.doi.org/10.1007/s10098-010-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 12 2010 6 22 04 661-670 |
spelling |
10.1007/s10098-010-0293-5 doi (DE-627)SPR008716803 (SPR)s10098-010-0293-5-e DE-627 ger DE-627 rakwb eng Kanniche, Mohamed verfasserin aut Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. Gas turbine (dpeaa)DE-He213 NO (dpeaa)DE-He213 CO (dpeaa)DE-He213 Chemical reactor network (dpeaa)DE-He213 Jet-stirred reactor (dpeaa)DE-He213 Enthalten in Clean Products and Processes Springer-Verlag, 2001 12(2010), 6 vom: 22. Apr., Seite 661-670 (DE-627)SPR008711836 nnns volume:12 year:2010 number:6 day:22 month:04 pages:661-670 https://dx.doi.org/10.1007/s10098-010-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 12 2010 6 22 04 661-670 |
allfields_unstemmed |
10.1007/s10098-010-0293-5 doi (DE-627)SPR008716803 (SPR)s10098-010-0293-5-e DE-627 ger DE-627 rakwb eng Kanniche, Mohamed verfasserin aut Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. Gas turbine (dpeaa)DE-He213 NO (dpeaa)DE-He213 CO (dpeaa)DE-He213 Chemical reactor network (dpeaa)DE-He213 Jet-stirred reactor (dpeaa)DE-He213 Enthalten in Clean Products and Processes Springer-Verlag, 2001 12(2010), 6 vom: 22. Apr., Seite 661-670 (DE-627)SPR008711836 nnns volume:12 year:2010 number:6 day:22 month:04 pages:661-670 https://dx.doi.org/10.1007/s10098-010-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 12 2010 6 22 04 661-670 |
allfieldsGer |
10.1007/s10098-010-0293-5 doi (DE-627)SPR008716803 (SPR)s10098-010-0293-5-e DE-627 ger DE-627 rakwb eng Kanniche, Mohamed verfasserin aut Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. Gas turbine (dpeaa)DE-He213 NO (dpeaa)DE-He213 CO (dpeaa)DE-He213 Chemical reactor network (dpeaa)DE-He213 Jet-stirred reactor (dpeaa)DE-He213 Enthalten in Clean Products and Processes Springer-Verlag, 2001 12(2010), 6 vom: 22. Apr., Seite 661-670 (DE-627)SPR008711836 nnns volume:12 year:2010 number:6 day:22 month:04 pages:661-670 https://dx.doi.org/10.1007/s10098-010-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 12 2010 6 22 04 661-670 |
allfieldsSound |
10.1007/s10098-010-0293-5 doi (DE-627)SPR008716803 (SPR)s10098-010-0293-5-e DE-627 ger DE-627 rakwb eng Kanniche, Mohamed verfasserin aut Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. Gas turbine (dpeaa)DE-He213 NO (dpeaa)DE-He213 CO (dpeaa)DE-He213 Chemical reactor network (dpeaa)DE-He213 Jet-stirred reactor (dpeaa)DE-He213 Enthalten in Clean Products and Processes Springer-Verlag, 2001 12(2010), 6 vom: 22. Apr., Seite 661-670 (DE-627)SPR008711836 nnns volume:12 year:2010 number:6 day:22 month:04 pages:661-670 https://dx.doi.org/10.1007/s10098-010-0293-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA AR 12 2010 6 22 04 661-670 |
language |
English |
source |
Enthalten in Clean Products and Processes 12(2010), 6 vom: 22. Apr., Seite 661-670 volume:12 year:2010 number:6 day:22 month:04 pages:661-670 |
sourceStr |
Enthalten in Clean Products and Processes 12(2010), 6 vom: 22. Apr., Seite 661-670 volume:12 year:2010 number:6 day:22 month:04 pages:661-670 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Gas turbine NO CO Chemical reactor network Jet-stirred reactor |
isfreeaccess_bool |
false |
container_title |
Clean Products and Processes |
authorswithroles_txt_mv |
Kanniche, Mohamed @@aut@@ |
publishDateDaySort_date |
2010-04-22T00:00:00Z |
hierarchy_top_id |
SPR008711836 |
id |
SPR008716803 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008716803</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519093317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10098-010-0293-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008716803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10098-010-0293-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanniche, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas turbine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactor network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet-stirred reactor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clean Products and Processes</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">12(2010), 6 vom: 22. Apr., Seite 661-670</subfield><subfield code="w">(DE-627)SPR008711836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:22</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:661-670</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10098-010-0293-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">22</subfield><subfield code="c">04</subfield><subfield code="h">661-670</subfield></datafield></record></collection>
|
author |
Kanniche, Mohamed |
spellingShingle |
Kanniche, Mohamed misc Gas turbine misc NO misc CO misc Chemical reactor network misc Jet-stirred reactor Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine |
authorStr |
Kanniche, Mohamed |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR008711836 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine Gas turbine (dpeaa)DE-He213 NO (dpeaa)DE-He213 CO (dpeaa)DE-He213 Chemical reactor network (dpeaa)DE-He213 Jet-stirred reactor (dpeaa)DE-He213 |
topic |
misc Gas turbine misc NO misc CO misc Chemical reactor network misc Jet-stirred reactor |
topic_unstemmed |
misc Gas turbine misc NO misc CO misc Chemical reactor network misc Jet-stirred reactor |
topic_browse |
misc Gas turbine misc NO misc CO misc Chemical reactor network misc Jet-stirred reactor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Clean Products and Processes |
hierarchy_parent_id |
SPR008711836 |
hierarchy_top_title |
Clean Products and Processes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR008711836 |
title |
Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine |
ctrlnum |
(DE-627)SPR008716803 (SPR)s10098-010-0293-5-e |
title_full |
Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine |
author_sort |
Kanniche, Mohamed |
journal |
Clean Products and Processes |
journalStr |
Clean Products and Processes |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
661 |
author_browse |
Kanniche, Mohamed |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Kanniche, Mohamed |
doi_str_mv |
10.1007/s10098-010-0293-5 |
title_sort |
coupling cfd with chemical reactor network for advanced $ no_{x} $ prediction in gas turbine |
title_auth |
Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine |
abstract |
Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. |
abstractGer |
Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. |
abstract_unstemmed |
Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA |
container_issue |
6 |
title_short |
Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine |
url |
https://dx.doi.org/10.1007/s10098-010-0293-5 |
remote_bool |
true |
ppnlink |
SPR008711836 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10098-010-0293-5 |
up_date |
2024-07-03T22:46:38.683Z |
_version_ |
1803599791982116864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008716803</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519093317.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10098-010-0293-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008716803</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10098-010-0293-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kanniche, Mohamed</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Coupling CFD with chemical reactor network for advanced $ NO_{x} $ prediction in gas turbine</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Gas turbine pollutant emissions, especially nitric oxides ($ NO_{x} $: NO and $ NO_{2} $) and carbon monoxide (CO) are limited to 25 ppmvd by the European legislation for natural gas operations. To meet this objective and that of future legislation, it is crucial to have access to numerical tools that could speedily predict NO and CO emissions when operating gas turbines (fuel flexibility, tuning of the fuel distribution between burners…). In this context EDF R&D has been developing a 3D turbulent gas combustion model the past few years. Nevertheless, the introduction of complex chemical kinetics in 3D turbulent combustion code is still too CPU-time consuming for industrial use. Thus, 3D computational fluid dynamics computations, using simple chemistry, are post-treated to generate a 0D chemical reactor network (CRN), which includes a detailed chemistry mechanism. The 3D simulations are used to provide information about the mixing state, and the flow topology including the turbulence effects. The present study focuses on the impact of ambient air conditions (temperature and relative humidity) on NO production by industrial gas turbines. The detailed chemical kinetic scheme is initially validated by laboratory tests on jet-stirred reactor performed in University of Washington.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gas turbine</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical reactor network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Jet-stirred reactor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clean Products and Processes</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">12(2010), 6 vom: 22. Apr., Seite 661-670</subfield><subfield code="w">(DE-627)SPR008711836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:22</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:661-670</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10098-010-0293-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">22</subfield><subfield code="c">04</subfield><subfield code="h">661-670</subfield></datafield></record></collection>
|
score |
7.399617 |