A combined process to treat lemon industry wastewater and produce biogas
Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic resid...
Ausführliche Beschreibung
Autor*in: |
Navarro, A. R. [verfasserIn] Rubio, M. C. [verfasserIn] Maldonado, M. C. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Clean Products and Processes - Springer-Verlag, 2001, 14(2011), 1 vom: 21. Apr., Seite 41-45 |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2011 ; number:1 ; day:21 ; month:04 ; pages:41-45 |
Links: |
---|
DOI / URN: |
10.1007/s10098-011-0373-1 |
---|
Katalog-ID: |
SPR008717907 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR008717907 | ||
003 | DE-627 | ||
005 | 20201124050228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10098-011-0373-1 |2 doi | |
035 | |a (DE-627)SPR008717907 | ||
035 | |a (SPR)s10098-011-0373-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Navarro, A. R. |e verfasserin |4 aut | |
245 | 1 | 2 | |a A combined process to treat lemon industry wastewater and produce biogas |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. | ||
650 | 4 | |a Biogas |7 (dpeaa)DE-He213 | |
650 | 4 | |a Treatment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lemon industry |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rubio, M. C. |e verfasserin |4 aut | |
700 | 1 | |a Maldonado, M. C. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Clean Products and Processes |d Springer-Verlag, 2001 |g 14(2011), 1 vom: 21. Apr., Seite 41-45 |w (DE-627)SPR008711836 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2011 |g number:1 |g day:21 |g month:04 |g pages:41-45 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10098-011-0373-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 14 |j 2011 |e 1 |b 21 |c 04 |h 41-45 |
author_variant |
a r n ar arn m c r mc mcr m c m mc mcm |
---|---|
matchkey_str |
navarroarrubiomcmaldonadomc:2011----:cmiepoesoralmnnutyatwt |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s10098-011-0373-1 doi (DE-627)SPR008717907 (SPR)s10098-011-0373-1-e DE-627 ger DE-627 rakwb eng Navarro, A. R. verfasserin aut A combined process to treat lemon industry wastewater and produce biogas 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. Biogas (dpeaa)DE-He213 Treatment (dpeaa)DE-He213 Lemon industry (dpeaa)DE-He213 Rubio, M. C. verfasserin aut Maldonado, M. C. verfasserin aut Enthalten in Clean Products and Processes Springer-Verlag, 2001 14(2011), 1 vom: 21. Apr., Seite 41-45 (DE-627)SPR008711836 nnns volume:14 year:2011 number:1 day:21 month:04 pages:41-45 https://dx.doi.org/10.1007/s10098-011-0373-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 14 2011 1 21 04 41-45 |
spelling |
10.1007/s10098-011-0373-1 doi (DE-627)SPR008717907 (SPR)s10098-011-0373-1-e DE-627 ger DE-627 rakwb eng Navarro, A. R. verfasserin aut A combined process to treat lemon industry wastewater and produce biogas 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. Biogas (dpeaa)DE-He213 Treatment (dpeaa)DE-He213 Lemon industry (dpeaa)DE-He213 Rubio, M. C. verfasserin aut Maldonado, M. C. verfasserin aut Enthalten in Clean Products and Processes Springer-Verlag, 2001 14(2011), 1 vom: 21. Apr., Seite 41-45 (DE-627)SPR008711836 nnns volume:14 year:2011 number:1 day:21 month:04 pages:41-45 https://dx.doi.org/10.1007/s10098-011-0373-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 14 2011 1 21 04 41-45 |
allfields_unstemmed |
10.1007/s10098-011-0373-1 doi (DE-627)SPR008717907 (SPR)s10098-011-0373-1-e DE-627 ger DE-627 rakwb eng Navarro, A. R. verfasserin aut A combined process to treat lemon industry wastewater and produce biogas 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. Biogas (dpeaa)DE-He213 Treatment (dpeaa)DE-He213 Lemon industry (dpeaa)DE-He213 Rubio, M. C. verfasserin aut Maldonado, M. C. verfasserin aut Enthalten in Clean Products and Processes Springer-Verlag, 2001 14(2011), 1 vom: 21. Apr., Seite 41-45 (DE-627)SPR008711836 nnns volume:14 year:2011 number:1 day:21 month:04 pages:41-45 https://dx.doi.org/10.1007/s10098-011-0373-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 14 2011 1 21 04 41-45 |
allfieldsGer |
10.1007/s10098-011-0373-1 doi (DE-627)SPR008717907 (SPR)s10098-011-0373-1-e DE-627 ger DE-627 rakwb eng Navarro, A. R. verfasserin aut A combined process to treat lemon industry wastewater and produce biogas 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. Biogas (dpeaa)DE-He213 Treatment (dpeaa)DE-He213 Lemon industry (dpeaa)DE-He213 Rubio, M. C. verfasserin aut Maldonado, M. C. verfasserin aut Enthalten in Clean Products and Processes Springer-Verlag, 2001 14(2011), 1 vom: 21. Apr., Seite 41-45 (DE-627)SPR008711836 nnns volume:14 year:2011 number:1 day:21 month:04 pages:41-45 https://dx.doi.org/10.1007/s10098-011-0373-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 14 2011 1 21 04 41-45 |
allfieldsSound |
10.1007/s10098-011-0373-1 doi (DE-627)SPR008717907 (SPR)s10098-011-0373-1-e DE-627 ger DE-627 rakwb eng Navarro, A. R. verfasserin aut A combined process to treat lemon industry wastewater and produce biogas 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. Biogas (dpeaa)DE-He213 Treatment (dpeaa)DE-He213 Lemon industry (dpeaa)DE-He213 Rubio, M. C. verfasserin aut Maldonado, M. C. verfasserin aut Enthalten in Clean Products and Processes Springer-Verlag, 2001 14(2011), 1 vom: 21. Apr., Seite 41-45 (DE-627)SPR008711836 nnns volume:14 year:2011 number:1 day:21 month:04 pages:41-45 https://dx.doi.org/10.1007/s10098-011-0373-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 14 2011 1 21 04 41-45 |
language |
English |
source |
Enthalten in Clean Products and Processes 14(2011), 1 vom: 21. Apr., Seite 41-45 volume:14 year:2011 number:1 day:21 month:04 pages:41-45 |
sourceStr |
Enthalten in Clean Products and Processes 14(2011), 1 vom: 21. Apr., Seite 41-45 volume:14 year:2011 number:1 day:21 month:04 pages:41-45 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Biogas Treatment Lemon industry |
isfreeaccess_bool |
false |
container_title |
Clean Products and Processes |
authorswithroles_txt_mv |
Navarro, A. R. @@aut@@ Rubio, M. C. @@aut@@ Maldonado, M. C. @@aut@@ |
publishDateDaySort_date |
2011-04-21T00:00:00Z |
hierarchy_top_id |
SPR008711836 |
id |
SPR008717907 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008717907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124050228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10098-011-0373-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008717907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10098-011-0373-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Navarro, A. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A combined process to treat lemon industry wastewater and produce biogas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biogas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lemon industry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubio, M. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maldonado, M. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clean Products and Processes</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">14(2011), 1 vom: 21. Apr., Seite 41-45</subfield><subfield code="w">(DE-627)SPR008711836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:41-45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10098-011-0373-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">41-45</subfield></datafield></record></collection>
|
author |
Navarro, A. R. |
spellingShingle |
Navarro, A. R. misc Biogas misc Treatment misc Lemon industry A combined process to treat lemon industry wastewater and produce biogas |
authorStr |
Navarro, A. R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR008711836 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
A combined process to treat lemon industry wastewater and produce biogas Biogas (dpeaa)DE-He213 Treatment (dpeaa)DE-He213 Lemon industry (dpeaa)DE-He213 |
topic |
misc Biogas misc Treatment misc Lemon industry |
topic_unstemmed |
misc Biogas misc Treatment misc Lemon industry |
topic_browse |
misc Biogas misc Treatment misc Lemon industry |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Clean Products and Processes |
hierarchy_parent_id |
SPR008711836 |
hierarchy_top_title |
Clean Products and Processes |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR008711836 |
title |
A combined process to treat lemon industry wastewater and produce biogas |
ctrlnum |
(DE-627)SPR008717907 (SPR)s10098-011-0373-1-e |
title_full |
A combined process to treat lemon industry wastewater and produce biogas |
author_sort |
Navarro, A. R. |
journal |
Clean Products and Processes |
journalStr |
Clean Products and Processes |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
41 |
author_browse |
Navarro, A. R. Rubio, M. C. Maldonado, M. C. |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Navarro, A. R. |
doi_str_mv |
10.1007/s10098-011-0373-1 |
author2-role |
verfasserin |
title_sort |
combined process to treat lemon industry wastewater and produce biogas |
title_auth |
A combined process to treat lemon industry wastewater and produce biogas |
abstract |
Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. |
abstractGer |
Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. |
abstract_unstemmed |
Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
1 |
title_short |
A combined process to treat lemon industry wastewater and produce biogas |
url |
https://dx.doi.org/10.1007/s10098-011-0373-1 |
remote_bool |
true |
author2 |
Rubio, M. C. Maldonado, M. C. |
author2Str |
Rubio, M. C. Maldonado, M. C. |
ppnlink |
SPR008711836 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10098-011-0373-1 |
up_date |
2024-07-03T22:46:52.172Z |
_version_ |
1803599806122164224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008717907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124050228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10098-011-0373-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008717907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10098-011-0373-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Navarro, A. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A combined process to treat lemon industry wastewater and produce biogas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We studied a process employed for treating lemon industry effluents, using the macrophyte Eishhornia crassipes (water hyacinth) in a phytoremediation tank with a 6000-L workload. The diluted effluents BOD and COD were reduced to 70 and 61%, respectively, working with a 1.5-h hydraulic residence time (HRT). We investigated the effect of adding every 12 h an inoculum consisting of a consortium of microorganisms isolated from the macrophyte roots and recirculating 30% of the outflow. In this way, we achieved a volumetric removal rate (VRR) of BOD = 354 g/$ m^{3} $ day. Plants were daily harvested from the tank to maintain growth rate and the density originally planted. We studied their use for biogas production in an anaerobic digester working with 12 and 16 days of hydraulic residence time. The yield obtained was 0.87 L/g and productivity 0.87 L/L day with a loading rate of 5 g/L day. Integrating both processes on an industrial scale would solve the effluent pollution problem and generate an energy source that could be used by the industry itself to lower its production costs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biogas</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lemon industry</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rubio, M. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maldonado, M. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Clean Products and Processes</subfield><subfield code="d">Springer-Verlag, 2001</subfield><subfield code="g">14(2011), 1 vom: 21. Apr., Seite 41-45</subfield><subfield code="w">(DE-627)SPR008711836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:41-45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10098-011-0373-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">04</subfield><subfield code="h">41-45</subfield></datafield></record></collection>
|
score |
7.4010153 |