ABS methods for continuous and integer linear equations and optimization
Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fu...
Ausführliche Beschreibung
Autor*in: |
Emilio, Spedicato [verfasserIn] Elena, Bodon [verfasserIn] Zunquan, Xia [verfasserIn] Nezam, Mahdavi-Amiri [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
Egerváry rank reduction matrix update Feasible direction methods for linearly constrained optimization |
---|
Übergeordnetes Werk: |
Enthalten in: Central European journal of operations research - Heidelberg : Physica-Verl., 1999, 18(2009), 1 vom: 29. Dez., Seite 73-95 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2009 ; number:1 ; day:29 ; month:12 ; pages:73-95 |
Links: |
---|
DOI / URN: |
10.1007/s10100-009-0128-9 |
---|
Katalog-ID: |
SPR008734569 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR008734569 | ||
003 | DE-627 | ||
005 | 20220110204332.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10100-009-0128-9 |2 doi | |
035 | |a (DE-627)SPR008734569 | ||
035 | |a (SPR)s10100-009-0128-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 300 |a 330 |a 650 |q ASE |
084 | |a 85.03 |2 bkl | ||
100 | 1 | |a Emilio, Spedicato |e verfasserin |4 aut | |
245 | 1 | 0 | |a ABS methods for continuous and integer linear equations and optimization |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. | ||
650 | 4 | |a Egerváry rank reduction matrix update |7 (dpeaa)DE-He213 | |
650 | 4 | |a ABS methods |7 (dpeaa)DE-He213 | |
650 | 4 | |a Linear systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diophantine Linear systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quasi-Newton equation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feasible direction methods for linearly constrained optimization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Simplex method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Primal-dual interior point methods |7 (dpeaa)DE-He213 | |
650 | 4 | |a ABSPACK |7 (dpeaa)DE-He213 | |
700 | 1 | |a Elena, Bodon |e verfasserin |4 aut | |
700 | 1 | |a Zunquan, Xia |e verfasserin |4 aut | |
700 | 1 | |a Nezam, Mahdavi-Amiri |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Central European journal of operations research |d Heidelberg : Physica-Verl., 1999 |g 18(2009), 1 vom: 29. Dez., Seite 73-95 |w (DE-627)357165160 |w (DE-600)2093829-9 |x 1613-9178 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2009 |g number:1 |g day:29 |g month:12 |g pages:73-95 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10100-009-0128-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OLC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_184 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 85.03 |q ASE |
951 | |a AR | ||
952 | |d 18 |j 2009 |e 1 |b 29 |c 12 |h 73-95 |
author_variant |
s e se b e be x z xz m a n man |
---|---|
matchkey_str |
article:16139178:2009----::bmtosocniuuadneelnaeut |
hierarchy_sort_str |
2009 |
bklnumber |
85.03 |
publishDate |
2009 |
allfields |
10.1007/s10100-009-0128-9 doi (DE-627)SPR008734569 (SPR)s10100-009-0128-9-e DE-627 ger DE-627 rakwb eng 300 330 650 ASE 85.03 bkl Emilio, Spedicato verfasserin aut ABS methods for continuous and integer linear equations and optimization 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. Egerváry rank reduction matrix update (dpeaa)DE-He213 ABS methods (dpeaa)DE-He213 Linear systems (dpeaa)DE-He213 Diophantine Linear systems (dpeaa)DE-He213 Quasi-Newton equation (dpeaa)DE-He213 Feasible direction methods for linearly constrained optimization (dpeaa)DE-He213 Simplex method (dpeaa)DE-He213 Primal-dual interior point methods (dpeaa)DE-He213 ABSPACK (dpeaa)DE-He213 Elena, Bodon verfasserin aut Zunquan, Xia verfasserin aut Nezam, Mahdavi-Amiri verfasserin aut Enthalten in Central European journal of operations research Heidelberg : Physica-Verl., 1999 18(2009), 1 vom: 29. Dez., Seite 73-95 (DE-627)357165160 (DE-600)2093829-9 1613-9178 nnns volume:18 year:2009 number:1 day:29 month:12 pages:73-95 https://dx.doi.org/10.1007/s10100-009-0128-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-WIW SSG-OLC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_184 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.03 ASE AR 18 2009 1 29 12 73-95 |
spelling |
10.1007/s10100-009-0128-9 doi (DE-627)SPR008734569 (SPR)s10100-009-0128-9-e DE-627 ger DE-627 rakwb eng 300 330 650 ASE 85.03 bkl Emilio, Spedicato verfasserin aut ABS methods for continuous and integer linear equations and optimization 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. Egerváry rank reduction matrix update (dpeaa)DE-He213 ABS methods (dpeaa)DE-He213 Linear systems (dpeaa)DE-He213 Diophantine Linear systems (dpeaa)DE-He213 Quasi-Newton equation (dpeaa)DE-He213 Feasible direction methods for linearly constrained optimization (dpeaa)DE-He213 Simplex method (dpeaa)DE-He213 Primal-dual interior point methods (dpeaa)DE-He213 ABSPACK (dpeaa)DE-He213 Elena, Bodon verfasserin aut Zunquan, Xia verfasserin aut Nezam, Mahdavi-Amiri verfasserin aut Enthalten in Central European journal of operations research Heidelberg : Physica-Verl., 1999 18(2009), 1 vom: 29. Dez., Seite 73-95 (DE-627)357165160 (DE-600)2093829-9 1613-9178 nnns volume:18 year:2009 number:1 day:29 month:12 pages:73-95 https://dx.doi.org/10.1007/s10100-009-0128-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-WIW SSG-OLC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_184 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.03 ASE AR 18 2009 1 29 12 73-95 |
allfields_unstemmed |
10.1007/s10100-009-0128-9 doi (DE-627)SPR008734569 (SPR)s10100-009-0128-9-e DE-627 ger DE-627 rakwb eng 300 330 650 ASE 85.03 bkl Emilio, Spedicato verfasserin aut ABS methods for continuous and integer linear equations and optimization 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. Egerváry rank reduction matrix update (dpeaa)DE-He213 ABS methods (dpeaa)DE-He213 Linear systems (dpeaa)DE-He213 Diophantine Linear systems (dpeaa)DE-He213 Quasi-Newton equation (dpeaa)DE-He213 Feasible direction methods for linearly constrained optimization (dpeaa)DE-He213 Simplex method (dpeaa)DE-He213 Primal-dual interior point methods (dpeaa)DE-He213 ABSPACK (dpeaa)DE-He213 Elena, Bodon verfasserin aut Zunquan, Xia verfasserin aut Nezam, Mahdavi-Amiri verfasserin aut Enthalten in Central European journal of operations research Heidelberg : Physica-Verl., 1999 18(2009), 1 vom: 29. Dez., Seite 73-95 (DE-627)357165160 (DE-600)2093829-9 1613-9178 nnns volume:18 year:2009 number:1 day:29 month:12 pages:73-95 https://dx.doi.org/10.1007/s10100-009-0128-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-WIW SSG-OLC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_184 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.03 ASE AR 18 2009 1 29 12 73-95 |
allfieldsGer |
10.1007/s10100-009-0128-9 doi (DE-627)SPR008734569 (SPR)s10100-009-0128-9-e DE-627 ger DE-627 rakwb eng 300 330 650 ASE 85.03 bkl Emilio, Spedicato verfasserin aut ABS methods for continuous and integer linear equations and optimization 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. Egerváry rank reduction matrix update (dpeaa)DE-He213 ABS methods (dpeaa)DE-He213 Linear systems (dpeaa)DE-He213 Diophantine Linear systems (dpeaa)DE-He213 Quasi-Newton equation (dpeaa)DE-He213 Feasible direction methods for linearly constrained optimization (dpeaa)DE-He213 Simplex method (dpeaa)DE-He213 Primal-dual interior point methods (dpeaa)DE-He213 ABSPACK (dpeaa)DE-He213 Elena, Bodon verfasserin aut Zunquan, Xia verfasserin aut Nezam, Mahdavi-Amiri verfasserin aut Enthalten in Central European journal of operations research Heidelberg : Physica-Verl., 1999 18(2009), 1 vom: 29. Dez., Seite 73-95 (DE-627)357165160 (DE-600)2093829-9 1613-9178 nnns volume:18 year:2009 number:1 day:29 month:12 pages:73-95 https://dx.doi.org/10.1007/s10100-009-0128-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-WIW SSG-OLC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_184 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.03 ASE AR 18 2009 1 29 12 73-95 |
allfieldsSound |
10.1007/s10100-009-0128-9 doi (DE-627)SPR008734569 (SPR)s10100-009-0128-9-e DE-627 ger DE-627 rakwb eng 300 330 650 ASE 85.03 bkl Emilio, Spedicato verfasserin aut ABS methods for continuous and integer linear equations and optimization 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. Egerváry rank reduction matrix update (dpeaa)DE-He213 ABS methods (dpeaa)DE-He213 Linear systems (dpeaa)DE-He213 Diophantine Linear systems (dpeaa)DE-He213 Quasi-Newton equation (dpeaa)DE-He213 Feasible direction methods for linearly constrained optimization (dpeaa)DE-He213 Simplex method (dpeaa)DE-He213 Primal-dual interior point methods (dpeaa)DE-He213 ABSPACK (dpeaa)DE-He213 Elena, Bodon verfasserin aut Zunquan, Xia verfasserin aut Nezam, Mahdavi-Amiri verfasserin aut Enthalten in Central European journal of operations research Heidelberg : Physica-Verl., 1999 18(2009), 1 vom: 29. Dez., Seite 73-95 (DE-627)357165160 (DE-600)2093829-9 1613-9178 nnns volume:18 year:2009 number:1 day:29 month:12 pages:73-95 https://dx.doi.org/10.1007/s10100-009-0128-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-WIW SSG-OLC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_184 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 85.03 ASE AR 18 2009 1 29 12 73-95 |
language |
English |
source |
Enthalten in Central European journal of operations research 18(2009), 1 vom: 29. Dez., Seite 73-95 volume:18 year:2009 number:1 day:29 month:12 pages:73-95 |
sourceStr |
Enthalten in Central European journal of operations research 18(2009), 1 vom: 29. Dez., Seite 73-95 volume:18 year:2009 number:1 day:29 month:12 pages:73-95 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Egerváry rank reduction matrix update ABS methods Linear systems Diophantine Linear systems Quasi-Newton equation Feasible direction methods for linearly constrained optimization Simplex method Primal-dual interior point methods ABSPACK |
dewey-raw |
300 |
isfreeaccess_bool |
false |
container_title |
Central European journal of operations research |
authorswithroles_txt_mv |
Emilio, Spedicato @@aut@@ Elena, Bodon @@aut@@ Zunquan, Xia @@aut@@ Nezam, Mahdavi-Amiri @@aut@@ |
publishDateDaySort_date |
2009-12-29T00:00:00Z |
hierarchy_top_id |
357165160 |
dewey-sort |
3300 |
id |
SPR008734569 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008734569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110204332.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10100-009-0128-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008734569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10100-009-0128-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">650</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Emilio, Spedicato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ABS methods for continuous and integer linear equations and optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Egerváry rank reduction matrix update</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABS methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diophantine Linear systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-Newton equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasible direction methods for linearly constrained optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simplex method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primal-dual interior point methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABSPACK</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elena, Bodon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zunquan, Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nezam, Mahdavi-Amiri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Central European journal of operations research</subfield><subfield code="d">Heidelberg : Physica-Verl., 1999</subfield><subfield code="g">18(2009), 1 vom: 29. Dez., Seite 73-95</subfield><subfield code="w">(DE-627)357165160</subfield><subfield code="w">(DE-600)2093829-9</subfield><subfield code="x">1613-9178</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:73-95</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10100-009-0128-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_184</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">12</subfield><subfield code="h">73-95</subfield></datafield></record></collection>
|
author |
Emilio, Spedicato |
spellingShingle |
Emilio, Spedicato ddc 300 bkl 85.03 misc Egerváry rank reduction matrix update misc ABS methods misc Linear systems misc Diophantine Linear systems misc Quasi-Newton equation misc Feasible direction methods for linearly constrained optimization misc Simplex method misc Primal-dual interior point methods misc ABSPACK ABS methods for continuous and integer linear equations and optimization |
authorStr |
Emilio, Spedicato |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)357165160 |
format |
electronic Article |
dewey-ones |
300 - Social sciences 330 - Economics 650 - Management & auxiliary services |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1613-9178 |
topic_title |
300 330 650 ASE 85.03 bkl ABS methods for continuous and integer linear equations and optimization Egerváry rank reduction matrix update (dpeaa)DE-He213 ABS methods (dpeaa)DE-He213 Linear systems (dpeaa)DE-He213 Diophantine Linear systems (dpeaa)DE-He213 Quasi-Newton equation (dpeaa)DE-He213 Feasible direction methods for linearly constrained optimization (dpeaa)DE-He213 Simplex method (dpeaa)DE-He213 Primal-dual interior point methods (dpeaa)DE-He213 ABSPACK (dpeaa)DE-He213 |
topic |
ddc 300 bkl 85.03 misc Egerváry rank reduction matrix update misc ABS methods misc Linear systems misc Diophantine Linear systems misc Quasi-Newton equation misc Feasible direction methods for linearly constrained optimization misc Simplex method misc Primal-dual interior point methods misc ABSPACK |
topic_unstemmed |
ddc 300 bkl 85.03 misc Egerváry rank reduction matrix update misc ABS methods misc Linear systems misc Diophantine Linear systems misc Quasi-Newton equation misc Feasible direction methods for linearly constrained optimization misc Simplex method misc Primal-dual interior point methods misc ABSPACK |
topic_browse |
ddc 300 bkl 85.03 misc Egerváry rank reduction matrix update misc ABS methods misc Linear systems misc Diophantine Linear systems misc Quasi-Newton equation misc Feasible direction methods for linearly constrained optimization misc Simplex method misc Primal-dual interior point methods misc ABSPACK |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Central European journal of operations research |
hierarchy_parent_id |
357165160 |
dewey-tens |
300 - Social sciences, sociology & anthropology 330 - Economics 650 - Management & public relations |
hierarchy_top_title |
Central European journal of operations research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)357165160 (DE-600)2093829-9 |
title |
ABS methods for continuous and integer linear equations and optimization |
ctrlnum |
(DE-627)SPR008734569 (SPR)s10100-009-0128-9-e |
title_full |
ABS methods for continuous and integer linear equations and optimization |
author_sort |
Emilio, Spedicato |
journal |
Central European journal of operations research |
journalStr |
Central European journal of operations research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
73 |
author_browse |
Emilio, Spedicato Elena, Bodon Zunquan, Xia Nezam, Mahdavi-Amiri |
container_volume |
18 |
class |
300 330 650 ASE 85.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Emilio, Spedicato |
doi_str_mv |
10.1007/s10100-009-0128-9 |
dewey-full |
300 330 650 |
author2-role |
verfasserin |
title_sort |
abs methods for continuous and integer linear equations and optimization |
title_auth |
ABS methods for continuous and integer linear equations and optimization |
abstract |
Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. |
abstractGer |
Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. |
abstract_unstemmed |
Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-WIW SSG-OLC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_184 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
ABS methods for continuous and integer linear equations and optimization |
url |
https://dx.doi.org/10.1007/s10100-009-0128-9 |
remote_bool |
true |
author2 |
Elena, Bodon Zunquan, Xia Nezam, Mahdavi-Amiri |
author2Str |
Elena, Bodon Zunquan, Xia Nezam, Mahdavi-Amiri |
ppnlink |
357165160 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10100-009-0128-9 |
up_date |
2024-07-03T22:51:14.836Z |
_version_ |
1803600081553719296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR008734569</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110204332.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10100-009-0128-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR008734569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10100-009-0128-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">300</subfield><subfield code="a">330</subfield><subfield code="a">650</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">85.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Emilio, Spedicato</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">ABS methods for continuous and integer linear equations and optimization</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract ABS methods are a large class of algorithms for solving continuous and integer linear algebraic equations, and nonlinear continuous algebraic equations, with applications to optimization. Recent work by Chinese researchers led by Zunquan Xia has extended these methods also to stochastic, fuzzy and infinite systems, extensions not considered here. The work on ABS methods began almost thirty years. It involved an international collaboration of mathematicians especially from Hungary, England, China and Iran, coordinated by the university of Bergamo. The ABS method are based on the rank reducing matrix update due to Egerváry and can be considered as the most fruitful extension of such technique. They have led to unification of classes of methods for several problems. Moreover they have produced some special algorithms with better complexity than the standard methods. For the linear integer case they have provided the most general polynomial time class of algorithms so far known; such algorithms have been extended to other integer problems, as linear inequalities and LP problems, in over a dozen papers written by Iranian mathematicians led by Nezam Mahdavi-Amiri. ABS methods can be implemented generally in a stable way, techniques existing to enhance their accuracy. Extensive numerical experiments have shown that they can outperform standard methods in several problems. Here we provide a review of their main properties, for linear systems and optimization. We also give the results of numerical experiments on some linear systems. This paper is dedicated to Professor Egerváry, developer of the rank reducing matrix update, that led to ABS methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Egerváry rank reduction matrix update</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABS methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diophantine Linear systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quasi-Newton equation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feasible direction methods for linearly constrained optimization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Simplex method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Primal-dual interior point methods</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ABSPACK</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elena, Bodon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zunquan, Xia</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nezam, Mahdavi-Amiri</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Central European journal of operations research</subfield><subfield code="d">Heidelberg : Physica-Verl., 1999</subfield><subfield code="g">18(2009), 1 vom: 29. Dez., Seite 73-95</subfield><subfield code="w">(DE-627)357165160</subfield><subfield code="w">(DE-600)2093829-9</subfield><subfield code="x">1613-9178</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:73-95</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10100-009-0128-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_184</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">85.03</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">12</subfield><subfield code="h">73-95</subfield></datafield></record></collection>
|
score |
7.3998127 |