Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal
Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydro...
Ausführliche Beschreibung
Autor*in: |
Kruse, Natalie A. S. [verfasserIn] Gozzard, E. [verfasserIn] Jarvis, A. P. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Mine water and the environment - Berlin : Springer, 1982, 28(2009), 2 vom: 05. März, Seite 115-123 |
---|---|
Übergeordnetes Werk: |
volume:28 ; year:2009 ; number:2 ; day:05 ; month:03 ; pages:115-123 |
Links: |
---|
DOI / URN: |
10.1007/s10230-009-0068-6 |
---|
Katalog-ID: |
SPR00917348X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR00917348X | ||
003 | DE-627 | ||
005 | 20230519184207.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10230-009-0068-6 |2 doi | |
035 | |a (DE-627)SPR00917348X | ||
035 | |a (SPR)s10230-009-0068-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |a 660 |q ASE |
084 | |a 57.00 |2 bkl | ||
100 | 1 | |a Kruse, Natalie A. S. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. | ||
650 | 4 | |a Hydraulic retention time |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mine water |7 (dpeaa)DE-He213 | |
650 | 4 | |a Passive treatment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wetland |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gozzard, E. |e verfasserin |4 aut | |
700 | 1 | |a Jarvis, A. P. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mine water and the environment |d Berlin : Springer, 1982 |g 28(2009), 2 vom: 05. März, Seite 115-123 |w (DE-627)332168301 |w (DE-600)2053169-2 |x 1616-1068 |7 nnns |
773 | 1 | 8 | |g volume:28 |g year:2009 |g number:2 |g day:05 |g month:03 |g pages:115-123 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10230-009-0068-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 57.00 |q ASE |
951 | |a AR | ||
952 | |d 28 |j 2009 |e 2 |b 05 |c 03 |h 115-123 |
author_variant |
n a s k nas nask e g eg a p j ap apj |
---|---|
matchkey_str |
article:16161068:2009----::eemntoohdalceiectmsneeaumnwtrramnssesnt |
hierarchy_sort_str |
2009 |
bklnumber |
57.00 |
publishDate |
2009 |
allfields |
10.1007/s10230-009-0068-6 doi (DE-627)SPR00917348X (SPR)s10230-009-0068-6-e DE-627 ger DE-627 rakwb eng 620 660 ASE 57.00 bkl Kruse, Natalie A. S. verfasserin aut Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. Hydraulic retention time (dpeaa)DE-He213 Mine water (dpeaa)DE-He213 Passive treatment (dpeaa)DE-He213 Wetland (dpeaa)DE-He213 Gozzard, E. verfasserin aut Jarvis, A. P. verfasserin aut Enthalten in Mine water and the environment Berlin : Springer, 1982 28(2009), 2 vom: 05. März, Seite 115-123 (DE-627)332168301 (DE-600)2053169-2 1616-1068 nnns volume:28 year:2009 number:2 day:05 month:03 pages:115-123 https://dx.doi.org/10.1007/s10230-009-0068-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 57.00 ASE AR 28 2009 2 05 03 115-123 |
spelling |
10.1007/s10230-009-0068-6 doi (DE-627)SPR00917348X (SPR)s10230-009-0068-6-e DE-627 ger DE-627 rakwb eng 620 660 ASE 57.00 bkl Kruse, Natalie A. S. verfasserin aut Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. Hydraulic retention time (dpeaa)DE-He213 Mine water (dpeaa)DE-He213 Passive treatment (dpeaa)DE-He213 Wetland (dpeaa)DE-He213 Gozzard, E. verfasserin aut Jarvis, A. P. verfasserin aut Enthalten in Mine water and the environment Berlin : Springer, 1982 28(2009), 2 vom: 05. März, Seite 115-123 (DE-627)332168301 (DE-600)2053169-2 1616-1068 nnns volume:28 year:2009 number:2 day:05 month:03 pages:115-123 https://dx.doi.org/10.1007/s10230-009-0068-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 57.00 ASE AR 28 2009 2 05 03 115-123 |
allfields_unstemmed |
10.1007/s10230-009-0068-6 doi (DE-627)SPR00917348X (SPR)s10230-009-0068-6-e DE-627 ger DE-627 rakwb eng 620 660 ASE 57.00 bkl Kruse, Natalie A. S. verfasserin aut Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. Hydraulic retention time (dpeaa)DE-He213 Mine water (dpeaa)DE-He213 Passive treatment (dpeaa)DE-He213 Wetland (dpeaa)DE-He213 Gozzard, E. verfasserin aut Jarvis, A. P. verfasserin aut Enthalten in Mine water and the environment Berlin : Springer, 1982 28(2009), 2 vom: 05. März, Seite 115-123 (DE-627)332168301 (DE-600)2053169-2 1616-1068 nnns volume:28 year:2009 number:2 day:05 month:03 pages:115-123 https://dx.doi.org/10.1007/s10230-009-0068-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 57.00 ASE AR 28 2009 2 05 03 115-123 |
allfieldsGer |
10.1007/s10230-009-0068-6 doi (DE-627)SPR00917348X (SPR)s10230-009-0068-6-e DE-627 ger DE-627 rakwb eng 620 660 ASE 57.00 bkl Kruse, Natalie A. S. verfasserin aut Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. Hydraulic retention time (dpeaa)DE-He213 Mine water (dpeaa)DE-He213 Passive treatment (dpeaa)DE-He213 Wetland (dpeaa)DE-He213 Gozzard, E. verfasserin aut Jarvis, A. P. verfasserin aut Enthalten in Mine water and the environment Berlin : Springer, 1982 28(2009), 2 vom: 05. März, Seite 115-123 (DE-627)332168301 (DE-600)2053169-2 1616-1068 nnns volume:28 year:2009 number:2 day:05 month:03 pages:115-123 https://dx.doi.org/10.1007/s10230-009-0068-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 57.00 ASE AR 28 2009 2 05 03 115-123 |
allfieldsSound |
10.1007/s10230-009-0068-6 doi (DE-627)SPR00917348X (SPR)s10230-009-0068-6-e DE-627 ger DE-627 rakwb eng 620 660 ASE 57.00 bkl Kruse, Natalie A. S. verfasserin aut Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. Hydraulic retention time (dpeaa)DE-He213 Mine water (dpeaa)DE-He213 Passive treatment (dpeaa)DE-He213 Wetland (dpeaa)DE-He213 Gozzard, E. verfasserin aut Jarvis, A. P. verfasserin aut Enthalten in Mine water and the environment Berlin : Springer, 1982 28(2009), 2 vom: 05. März, Seite 115-123 (DE-627)332168301 (DE-600)2053169-2 1616-1068 nnns volume:28 year:2009 number:2 day:05 month:03 pages:115-123 https://dx.doi.org/10.1007/s10230-009-0068-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 57.00 ASE AR 28 2009 2 05 03 115-123 |
language |
English |
source |
Enthalten in Mine water and the environment 28(2009), 2 vom: 05. März, Seite 115-123 volume:28 year:2009 number:2 day:05 month:03 pages:115-123 |
sourceStr |
Enthalten in Mine water and the environment 28(2009), 2 vom: 05. März, Seite 115-123 volume:28 year:2009 number:2 day:05 month:03 pages:115-123 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hydraulic retention time Mine water Passive treatment Wetland |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Mine water and the environment |
authorswithroles_txt_mv |
Kruse, Natalie A. S. @@aut@@ Gozzard, E. @@aut@@ Jarvis, A. P. @@aut@@ |
publishDateDaySort_date |
2009-03-05T00:00:00Z |
hierarchy_top_id |
332168301 |
dewey-sort |
3620 |
id |
SPR00917348X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00917348X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10230-009-0068-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00917348X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10230-009-0068-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kruse, Natalie A. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic retention time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mine water</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wetland</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gozzard, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jarvis, A. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mine water and the environment</subfield><subfield code="d">Berlin : Springer, 1982</subfield><subfield code="g">28(2009), 2 vom: 05. März, Seite 115-123</subfield><subfield code="w">(DE-627)332168301</subfield><subfield code="w">(DE-600)2053169-2</subfield><subfield code="x">1616-1068</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:115-123</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10230-009-0068-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">57.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">03</subfield><subfield code="h">115-123</subfield></datafield></record></collection>
|
author |
Kruse, Natalie A. S. |
spellingShingle |
Kruse, Natalie A. S. ddc 620 bkl 57.00 misc Hydraulic retention time misc Mine water misc Passive treatment misc Wetland Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal |
authorStr |
Kruse, Natalie A. S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)332168301 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations 660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1616-1068 |
topic_title |
620 660 ASE 57.00 bkl Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal Hydraulic retention time (dpeaa)DE-He213 Mine water (dpeaa)DE-He213 Passive treatment (dpeaa)DE-He213 Wetland (dpeaa)DE-He213 |
topic |
ddc 620 bkl 57.00 misc Hydraulic retention time misc Mine water misc Passive treatment misc Wetland |
topic_unstemmed |
ddc 620 bkl 57.00 misc Hydraulic retention time misc Mine water misc Passive treatment misc Wetland |
topic_browse |
ddc 620 bkl 57.00 misc Hydraulic retention time misc Mine water misc Passive treatment misc Wetland |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mine water and the environment |
hierarchy_parent_id |
332168301 |
dewey-tens |
620 - Engineering 660 - Chemical engineering |
hierarchy_top_title |
Mine water and the environment |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)332168301 (DE-600)2053169-2 |
title |
Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal |
ctrlnum |
(DE-627)SPR00917348X (SPR)s10230-009-0068-6-e |
title_full |
Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal |
author_sort |
Kruse, Natalie A. S. |
journal |
Mine water and the environment |
journalStr |
Mine water and the environment |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
115 |
author_browse |
Kruse, Natalie A. S. Gozzard, E. Jarvis, A. P. |
container_volume |
28 |
class |
620 660 ASE 57.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kruse, Natalie A. S. |
doi_str_mv |
10.1007/s10230-009-0068-6 |
dewey-full |
620 660 |
author2-role |
verfasserin |
title_sort |
determination of hydraulic residence times in several uk mine water treatment systems and their relationship to iron removal |
title_auth |
Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal |
abstract |
Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. |
abstractGer |
Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. |
abstract_unstemmed |
Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal |
url |
https://dx.doi.org/10.1007/s10230-009-0068-6 |
remote_bool |
true |
author2 |
Gozzard, E. Jarvis, A. P. |
author2Str |
Gozzard, E. Jarvis, A. P. |
ppnlink |
332168301 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10230-009-0068-6 |
up_date |
2024-07-04T00:57:43.381Z |
_version_ |
1803608038714638336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR00917348X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519184207.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10230-009-0068-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR00917348X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10230-009-0068-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="a">660</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">57.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kruse, Natalie A. S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Determination of Hydraulic Residence Times in Several UK Mine Water Treatment Systems and their Relationship to Iron Removal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the UK, the Coal Authority has more than 40 mine water treatment systems, most of which are wetland systems with settlement lagoon pretreatment. The purpose of treatment in wetlands is the oxidation of ferrous to ferric iron and the subsequent hydrolysis and precipitation of ferric hydroxide within the wetland. It is generally accepted (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35; Skousen and Ziemkiewicz, Acid mine drainage control and treatment, 1996, p 362; Younger et al., Mine water: hydrology, pollution, remediation, 2002, p 442) that this process proceeds by a first-order rate law, although most systems are designed based on an areal removal rate (10 g/$ m^{2} $/day) developed by the U.S. Bureau of Mines (Hedin et al., Passive treatment of coal mine drainage, 1994, p 35); this design guideline inherently assumes a constant removal rate. Given the actual kinetics of iron removal in wetlands, it follows that residence time will control iron removal; given the wide range of system geometries and aspects, it is logical to ascertain the actual hydraulic residence time of wetlands and settlement lagoons and determine the effect this has on iron removal. To make a preliminary assessment of this link, hydraulic residence time of two Coal Authority wetlands (Lambley and Whittle) and two Coal Authority settlement lagoons (Acomb East, Acomb West and Whittle) were measured using bromide tracer tests. Water samples for iron analysis and flow measurements were taken during each tracer test. The Lambley wetland performs well in terms of residence time, and, as reeds become established and adsorptive processes increase, its iron removal performance (currently 58% removal) may improve, but the low influent iron concentration appears to be a significant impediment to meeting the original performance target. In contrast, the hydraulic performance of the Whittle wetland system is poor, which appears to be due to accumulation of dead plant material coupled with a high length to width ratio. However, performance in terms of iron removal is good (92% removal), which appears to be due to the higher influent iron concentration, and especially the fact that the iron enters the wetland largely in particulate form. The longer residence time of water within the Acomb lagoons (≈12 h) resulted in far more effective iron removal (72% in the east lagoon and 85% in the west lagoon) than the shorter residence time at Whittle (24% iron removal, ≈5 h residence time). Performance (in terms of iron removal) of the settlement lagoon systems appears to be far more closely related to the hydraulic residence time (albeit this conclusion must be tentative, given that only three systems have been investigated, and the Acomb system receives chemical addition). Based on this study, treatment system sizing using 100 $ m^{2} $ lagoon area per 1 L/s flow appears to be a more appropriate basis for design rather than an areal iron removal rate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hydraulic retention time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mine water</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Passive treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wetland</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gozzard, E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jarvis, A. P.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mine water and the environment</subfield><subfield code="d">Berlin : Springer, 1982</subfield><subfield code="g">28(2009), 2 vom: 05. März, Seite 115-123</subfield><subfield code="w">(DE-627)332168301</subfield><subfield code="w">(DE-600)2053169-2</subfield><subfield code="x">1616-1068</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:28</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:115-123</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10230-009-0068-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">57.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">28</subfield><subfield code="j">2009</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">03</subfield><subfield code="h">115-123</subfield></datafield></record></collection>
|
score |
7.401602 |