Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000
Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable...
Ausführliche Beschreibung
Autor*in: |
Zauner, Markus [verfasserIn] Sandham, Neil D. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Flow, turbulence and combustion - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947, 104(2019), 2-3 vom: 03. Dez., Seite 509-532 |
---|---|
Übergeordnetes Werk: |
volume:104 ; year:2019 ; number:2-3 ; day:03 ; month:12 ; pages:509-532 |
Links: |
---|
DOI / URN: |
10.1007/s10494-019-00087-z |
---|
Katalog-ID: |
SPR010488189 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR010488189 | ||
003 | DE-627 | ||
005 | 20220110220807.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10494-019-00087-z |2 doi | |
035 | |a (DE-627)SPR010488189 | ||
035 | |a (SPR)s10494-019-00087-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 600 |q ASE |
084 | |a 50.34 |2 bkl | ||
084 | |a 52.51 |2 bkl | ||
100 | 1 | |a Zauner, Markus |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. | ||
650 | 4 | |a Airfoil |7 (dpeaa)DE-He213 | |
650 | 4 | |a DNS |7 (dpeaa)DE-He213 | |
650 | 4 | |a CFD |7 (dpeaa)DE-He213 | |
650 | 4 | |a DMD |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transonic buffet |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sandham, Neil D. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Flow, turbulence and combustion |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947 |g 104(2019), 2-3 vom: 03. Dez., Seite 509-532 |w (DE-627)302722408 |w (DE-600)1492282-4 |x 1573-1987 |7 nnns |
773 | 1 | 8 | |g volume:104 |g year:2019 |g number:2-3 |g day:03 |g month:12 |g pages:509-532 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10494-019-00087-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.34 |q ASE |
936 | b | k | |a 52.51 |q ASE |
951 | |a AR | ||
952 | |d 104 |j 2019 |e 2-3 |b 03 |c 12 |h 509-532 |
author_variant |
m z mz n d s nd nds |
---|---|
matchkey_str |
article:15731987:2019----::oaaayioaaiafoarolnebfecn |
hierarchy_sort_str |
2019 |
bklnumber |
50.34 52.51 |
publishDate |
2019 |
allfields |
10.1007/s10494-019-00087-z doi (DE-627)SPR010488189 (SPR)s10494-019-00087-z-e DE-627 ger DE-627 rakwb eng 500 600 ASE 50.34 bkl 52.51 bkl Zauner, Markus verfasserin aut Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. Airfoil (dpeaa)DE-He213 DNS (dpeaa)DE-He213 CFD (dpeaa)DE-He213 DMD (dpeaa)DE-He213 Transonic buffet (dpeaa)DE-He213 Sandham, Neil D. verfasserin aut Enthalten in Flow, turbulence and combustion Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947 104(2019), 2-3 vom: 03. Dez., Seite 509-532 (DE-627)302722408 (DE-600)1492282-4 1573-1987 nnns volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 https://dx.doi.org/10.1007/s10494-019-00087-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.34 ASE 52.51 ASE AR 104 2019 2-3 03 12 509-532 |
spelling |
10.1007/s10494-019-00087-z doi (DE-627)SPR010488189 (SPR)s10494-019-00087-z-e DE-627 ger DE-627 rakwb eng 500 600 ASE 50.34 bkl 52.51 bkl Zauner, Markus verfasserin aut Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. Airfoil (dpeaa)DE-He213 DNS (dpeaa)DE-He213 CFD (dpeaa)DE-He213 DMD (dpeaa)DE-He213 Transonic buffet (dpeaa)DE-He213 Sandham, Neil D. verfasserin aut Enthalten in Flow, turbulence and combustion Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947 104(2019), 2-3 vom: 03. Dez., Seite 509-532 (DE-627)302722408 (DE-600)1492282-4 1573-1987 nnns volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 https://dx.doi.org/10.1007/s10494-019-00087-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.34 ASE 52.51 ASE AR 104 2019 2-3 03 12 509-532 |
allfields_unstemmed |
10.1007/s10494-019-00087-z doi (DE-627)SPR010488189 (SPR)s10494-019-00087-z-e DE-627 ger DE-627 rakwb eng 500 600 ASE 50.34 bkl 52.51 bkl Zauner, Markus verfasserin aut Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. Airfoil (dpeaa)DE-He213 DNS (dpeaa)DE-He213 CFD (dpeaa)DE-He213 DMD (dpeaa)DE-He213 Transonic buffet (dpeaa)DE-He213 Sandham, Neil D. verfasserin aut Enthalten in Flow, turbulence and combustion Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947 104(2019), 2-3 vom: 03. Dez., Seite 509-532 (DE-627)302722408 (DE-600)1492282-4 1573-1987 nnns volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 https://dx.doi.org/10.1007/s10494-019-00087-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.34 ASE 52.51 ASE AR 104 2019 2-3 03 12 509-532 |
allfieldsGer |
10.1007/s10494-019-00087-z doi (DE-627)SPR010488189 (SPR)s10494-019-00087-z-e DE-627 ger DE-627 rakwb eng 500 600 ASE 50.34 bkl 52.51 bkl Zauner, Markus verfasserin aut Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. Airfoil (dpeaa)DE-He213 DNS (dpeaa)DE-He213 CFD (dpeaa)DE-He213 DMD (dpeaa)DE-He213 Transonic buffet (dpeaa)DE-He213 Sandham, Neil D. verfasserin aut Enthalten in Flow, turbulence and combustion Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947 104(2019), 2-3 vom: 03. Dez., Seite 509-532 (DE-627)302722408 (DE-600)1492282-4 1573-1987 nnns volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 https://dx.doi.org/10.1007/s10494-019-00087-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.34 ASE 52.51 ASE AR 104 2019 2-3 03 12 509-532 |
allfieldsSound |
10.1007/s10494-019-00087-z doi (DE-627)SPR010488189 (SPR)s10494-019-00087-z-e DE-627 ger DE-627 rakwb eng 500 600 ASE 50.34 bkl 52.51 bkl Zauner, Markus verfasserin aut Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. Airfoil (dpeaa)DE-He213 DNS (dpeaa)DE-He213 CFD (dpeaa)DE-He213 DMD (dpeaa)DE-He213 Transonic buffet (dpeaa)DE-He213 Sandham, Neil D. verfasserin aut Enthalten in Flow, turbulence and combustion Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947 104(2019), 2-3 vom: 03. Dez., Seite 509-532 (DE-627)302722408 (DE-600)1492282-4 1573-1987 nnns volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 https://dx.doi.org/10.1007/s10494-019-00087-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 50.34 ASE 52.51 ASE AR 104 2019 2-3 03 12 509-532 |
language |
English |
source |
Enthalten in Flow, turbulence and combustion 104(2019), 2-3 vom: 03. Dez., Seite 509-532 volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 |
sourceStr |
Enthalten in Flow, turbulence and combustion 104(2019), 2-3 vom: 03. Dez., Seite 509-532 volume:104 year:2019 number:2-3 day:03 month:12 pages:509-532 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Airfoil DNS CFD DMD Transonic buffet |
dewey-raw |
500 |
isfreeaccess_bool |
true |
container_title |
Flow, turbulence and combustion |
authorswithroles_txt_mv |
Zauner, Markus @@aut@@ Sandham, Neil D. @@aut@@ |
publishDateDaySort_date |
2019-12-03T00:00:00Z |
hierarchy_top_id |
302722408 |
dewey-sort |
3500 |
id |
SPR010488189 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR010488189</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110220807.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10494-019-00087-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR010488189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10494-019-00087-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zauner, Markus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airfoil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DMD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transonic buffet</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandham, Neil D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Flow, turbulence and combustion</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947</subfield><subfield code="g">104(2019), 2-3 vom: 03. Dez., Seite 509-532</subfield><subfield code="w">(DE-627)302722408</subfield><subfield code="w">(DE-600)1492282-4</subfield><subfield code="x">1573-1987</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2-3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:509-532</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10494-019-00087-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.34</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.51</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">2019</subfield><subfield code="e">2-3</subfield><subfield code="b">03</subfield><subfield code="c">12</subfield><subfield code="h">509-532</subfield></datafield></record></collection>
|
author |
Zauner, Markus |
spellingShingle |
Zauner, Markus ddc 500 bkl 50.34 bkl 52.51 misc Airfoil misc DNS misc CFD misc DMD misc Transonic buffet Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 |
authorStr |
Zauner, Markus |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)302722408 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-1987 |
topic_title |
500 600 ASE 50.34 bkl 52.51 bkl Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 Airfoil (dpeaa)DE-He213 DNS (dpeaa)DE-He213 CFD (dpeaa)DE-He213 DMD (dpeaa)DE-He213 Transonic buffet (dpeaa)DE-He213 |
topic |
ddc 500 bkl 50.34 bkl 52.51 misc Airfoil misc DNS misc CFD misc DMD misc Transonic buffet |
topic_unstemmed |
ddc 500 bkl 50.34 bkl 52.51 misc Airfoil misc DNS misc CFD misc DMD misc Transonic buffet |
topic_browse |
ddc 500 bkl 50.34 bkl 52.51 misc Airfoil misc DNS misc CFD misc DMD misc Transonic buffet |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Flow, turbulence and combustion |
hierarchy_parent_id |
302722408 |
dewey-tens |
500 - Science 600 - Technology |
hierarchy_top_title |
Flow, turbulence and combustion |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)302722408 (DE-600)1492282-4 |
title |
Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 |
ctrlnum |
(DE-627)SPR010488189 (SPR)s10494-019-00087-z-e |
title_full |
Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 |
author_sort |
Zauner, Markus |
journal |
Flow, turbulence and combustion |
journalStr |
Flow, turbulence and combustion |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
509 |
author_browse |
Zauner, Markus Sandham, Neil D. |
container_volume |
104 |
class |
500 600 ASE 50.34 bkl 52.51 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zauner, Markus |
doi_str_mv |
10.1007/s10494-019-00087-z |
dewey-full |
500 600 |
author2-role |
verfasserin |
title_sort |
modal analysis of a laminar-flow airfoil under buffet conditions at re = 500,000 |
title_auth |
Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 |
abstract |
Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. |
abstractGer |
Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. |
abstract_unstemmed |
Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2-3 |
title_short |
Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000 |
url |
https://dx.doi.org/10.1007/s10494-019-00087-z |
remote_bool |
true |
author2 |
Sandham, Neil D. |
author2Str |
Sandham, Neil D. |
ppnlink |
302722408 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10494-019-00087-z |
up_date |
2024-07-03T16:26:15.761Z |
_version_ |
1803575860409663488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR010488189</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110220807.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10494-019-00087-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR010488189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10494-019-00087-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.34</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.51</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zauner, Markus</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modal Analysis of a Laminar-Flow Airfoil under Buffet Conditions at Re = 500,000</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An airfoil undergoing transonic buffet exhibits a complex combination of unsteady shock-wave and boundary-layer phenomena, for which prediction models are deficient. Recent approaches applying computational fluid mechanics methods using turbulence models seem promising, but are still unable to answer some fundamental questions on the detailed buffet mechanism. The present contribution is based on direct numerical simulations of a laminar flow airfoil undergoing transonic buffet at Mach number M = 0.7 and a moderate Reynolds number Re = 500, 000. At an angle of attack α = $ 4^{∘} $, a significant change of the boundary layer stability depending on the aerodynamic load of the airfoil is observed. Besides Kelvin Helmholtz instabilities, a global mode, showing the coupled acoustic and flow-separation dynamics, can be identified, in agreement with literature. These modes are also present in a dynamic mode decomposition (DMD) of the unsteady direct numerical solution. Furthermore, DMD picks up the buffet mode at a Strouhal number of St = 0.12 that agrees with experiments. The reconstruction of the flow fluctuations was found to be more complete and robust with the DMD analysis, compared to the global stability analysis of the mean flow. Raising the angle of attack from α = $ 3^{∘} $ to α = $ 4^{∘} $ leads to an increase in strength of DMD modes corresponding to type C shock motion. An important observation is that, in the present example, transonic buffet is not directly coupled with the shock motion.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Airfoil</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CFD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DMD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transonic buffet</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sandham, Neil D.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Flow, turbulence and combustion</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1947</subfield><subfield code="g">104(2019), 2-3 vom: 03. Dez., Seite 509-532</subfield><subfield code="w">(DE-627)302722408</subfield><subfield code="w">(DE-600)1492282-4</subfield><subfield code="x">1573-1987</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:104</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2-3</subfield><subfield code="g">day:03</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:509-532</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10494-019-00087-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.34</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.51</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">104</subfield><subfield code="j">2019</subfield><subfield code="e">2-3</subfield><subfield code="b">03</subfield><subfield code="c">12</subfield><subfield code="h">509-532</subfield></datafield></record></collection>
|
score |
7.3983746 |