A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery
Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now,...
Ausführliche Beschreibung
Autor*in: |
Gorenberg, Miguel [verfasserIn] Rotztein, Hector [verfasserIn] Marmor, Alon [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Cardiovascular engineering - Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001, 9(2009), 1 vom: März, Seite 27-31 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2009 ; number:1 ; month:03 ; pages:27-31 |
Links: |
---|
DOI / URN: |
10.1007/s10558-009-9064-5 |
---|
Katalog-ID: |
SPR011291850 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR011291850 | ||
003 | DE-627 | ||
005 | 20230519080244.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10558-009-9064-5 |2 doi | |
035 | |a (DE-627)SPR011291850 | ||
035 | |a (SPR)s10558-009-9064-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 610 |q ASE |
084 | |a 44.85 |2 bkl | ||
100 | 1 | |a Gorenberg, Miguel |e verfasserin |4 aut | |
245 | 1 | 2 | |a A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. | ||
650 | 4 | |a Cardiac performance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Myocardial ischemia |7 (dpeaa)DE-He213 | |
650 | 4 | |a dP/dt |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hemodynamic model |7 (dpeaa)DE-He213 | |
700 | 1 | |a Rotztein, Hector |e verfasserin |4 aut | |
700 | 1 | |a Marmor, Alon |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cardiovascular engineering |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001 |g 9(2009), 1 vom: März, Seite 27-31 |w (DE-627)325609152 |w (DE-600)2037838-5 |x 1573-6806 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2009 |g number:1 |g month:03 |g pages:27-31 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10558-009-9064-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_711 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2190 | ||
936 | b | k | |a 44.85 |q ASE |
951 | |a AR | ||
952 | |d 9 |j 2009 |e 1 |c 03 |h 27-31 |
author_variant |
m g mg h r hr a m am |
---|---|
matchkey_str |
article:15736806:2009----::nwoivsvdvcfresrncnrljcinptahmtclonainfadaddmauee |
hierarchy_sort_str |
2009 |
bklnumber |
44.85 |
publishDate |
2009 |
allfields |
10.1007/s10558-009-9064-5 doi (DE-627)SPR011291850 (SPR)s10558-009-9064-5-e DE-627 ger DE-627 rakwb eng 610 ASE 44.85 bkl Gorenberg, Miguel verfasserin aut A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. Cardiac performance (dpeaa)DE-He213 Myocardial ischemia (dpeaa)DE-He213 dP/dt (dpeaa)DE-He213 Hemodynamic model (dpeaa)DE-He213 Rotztein, Hector verfasserin aut Marmor, Alon verfasserin aut Enthalten in Cardiovascular engineering Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001 9(2009), 1 vom: März, Seite 27-31 (DE-627)325609152 (DE-600)2037838-5 1573-6806 nnns volume:9 year:2009 number:1 month:03 pages:27-31 https://dx.doi.org/10.1007/s10558-009-9064-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2027 GBV_ILN_2048 GBV_ILN_2190 44.85 ASE AR 9 2009 1 03 27-31 |
spelling |
10.1007/s10558-009-9064-5 doi (DE-627)SPR011291850 (SPR)s10558-009-9064-5-e DE-627 ger DE-627 rakwb eng 610 ASE 44.85 bkl Gorenberg, Miguel verfasserin aut A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. Cardiac performance (dpeaa)DE-He213 Myocardial ischemia (dpeaa)DE-He213 dP/dt (dpeaa)DE-He213 Hemodynamic model (dpeaa)DE-He213 Rotztein, Hector verfasserin aut Marmor, Alon verfasserin aut Enthalten in Cardiovascular engineering Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001 9(2009), 1 vom: März, Seite 27-31 (DE-627)325609152 (DE-600)2037838-5 1573-6806 nnns volume:9 year:2009 number:1 month:03 pages:27-31 https://dx.doi.org/10.1007/s10558-009-9064-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2027 GBV_ILN_2048 GBV_ILN_2190 44.85 ASE AR 9 2009 1 03 27-31 |
allfields_unstemmed |
10.1007/s10558-009-9064-5 doi (DE-627)SPR011291850 (SPR)s10558-009-9064-5-e DE-627 ger DE-627 rakwb eng 610 ASE 44.85 bkl Gorenberg, Miguel verfasserin aut A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. Cardiac performance (dpeaa)DE-He213 Myocardial ischemia (dpeaa)DE-He213 dP/dt (dpeaa)DE-He213 Hemodynamic model (dpeaa)DE-He213 Rotztein, Hector verfasserin aut Marmor, Alon verfasserin aut Enthalten in Cardiovascular engineering Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001 9(2009), 1 vom: März, Seite 27-31 (DE-627)325609152 (DE-600)2037838-5 1573-6806 nnns volume:9 year:2009 number:1 month:03 pages:27-31 https://dx.doi.org/10.1007/s10558-009-9064-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2027 GBV_ILN_2048 GBV_ILN_2190 44.85 ASE AR 9 2009 1 03 27-31 |
allfieldsGer |
10.1007/s10558-009-9064-5 doi (DE-627)SPR011291850 (SPR)s10558-009-9064-5-e DE-627 ger DE-627 rakwb eng 610 ASE 44.85 bkl Gorenberg, Miguel verfasserin aut A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. Cardiac performance (dpeaa)DE-He213 Myocardial ischemia (dpeaa)DE-He213 dP/dt (dpeaa)DE-He213 Hemodynamic model (dpeaa)DE-He213 Rotztein, Hector verfasserin aut Marmor, Alon verfasserin aut Enthalten in Cardiovascular engineering Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001 9(2009), 1 vom: März, Seite 27-31 (DE-627)325609152 (DE-600)2037838-5 1573-6806 nnns volume:9 year:2009 number:1 month:03 pages:27-31 https://dx.doi.org/10.1007/s10558-009-9064-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2027 GBV_ILN_2048 GBV_ILN_2190 44.85 ASE AR 9 2009 1 03 27-31 |
allfieldsSound |
10.1007/s10558-009-9064-5 doi (DE-627)SPR011291850 (SPR)s10558-009-9064-5-e DE-627 ger DE-627 rakwb eng 610 ASE 44.85 bkl Gorenberg, Miguel verfasserin aut A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. Cardiac performance (dpeaa)DE-He213 Myocardial ischemia (dpeaa)DE-He213 dP/dt (dpeaa)DE-He213 Hemodynamic model (dpeaa)DE-He213 Rotztein, Hector verfasserin aut Marmor, Alon verfasserin aut Enthalten in Cardiovascular engineering Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001 9(2009), 1 vom: März, Seite 27-31 (DE-627)325609152 (DE-600)2037838-5 1573-6806 nnns volume:9 year:2009 number:1 month:03 pages:27-31 https://dx.doi.org/10.1007/s10558-009-9064-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2027 GBV_ILN_2048 GBV_ILN_2190 44.85 ASE AR 9 2009 1 03 27-31 |
language |
English |
source |
Enthalten in Cardiovascular engineering 9(2009), 1 vom: März, Seite 27-31 volume:9 year:2009 number:1 month:03 pages:27-31 |
sourceStr |
Enthalten in Cardiovascular engineering 9(2009), 1 vom: März, Seite 27-31 volume:9 year:2009 number:1 month:03 pages:27-31 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cardiac performance Myocardial ischemia dP/dt Hemodynamic model |
dewey-raw |
610 |
isfreeaccess_bool |
false |
container_title |
Cardiovascular engineering |
authorswithroles_txt_mv |
Gorenberg, Miguel @@aut@@ Rotztein, Hector @@aut@@ Marmor, Alon @@aut@@ |
publishDateDaySort_date |
2009-03-01T00:00:00Z |
hierarchy_top_id |
325609152 |
dewey-sort |
3610 |
id |
SPR011291850 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR011291850</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519080244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10558-009-9064-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR011291850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10558-009-9064-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorenberg, Miguel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardiac performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Myocardial ischemia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dP/dt</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemodynamic model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rotztein, Hector</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marmor, Alon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cardiovascular engineering</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001</subfield><subfield code="g">9(2009), 1 vom: März, Seite 27-31</subfield><subfield code="w">(DE-627)325609152</subfield><subfield code="w">(DE-600)2037838-5</subfield><subfield code="x">1573-6806</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:27-31</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10558-009-9064-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_711</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">27-31</subfield></datafield></record></collection>
|
author |
Gorenberg, Miguel |
spellingShingle |
Gorenberg, Miguel ddc 610 bkl 44.85 misc Cardiac performance misc Myocardial ischemia misc dP/dt misc Hemodynamic model A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery |
authorStr |
Gorenberg, Miguel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325609152 |
format |
electronic Article |
dewey-ones |
610 - Medicine & health |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-6806 |
topic_title |
610 ASE 44.85 bkl A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery Cardiac performance (dpeaa)DE-He213 Myocardial ischemia (dpeaa)DE-He213 dP/dt (dpeaa)DE-He213 Hemodynamic model (dpeaa)DE-He213 |
topic |
ddc 610 bkl 44.85 misc Cardiac performance misc Myocardial ischemia misc dP/dt misc Hemodynamic model |
topic_unstemmed |
ddc 610 bkl 44.85 misc Cardiac performance misc Myocardial ischemia misc dP/dt misc Hemodynamic model |
topic_browse |
ddc 610 bkl 44.85 misc Cardiac performance misc Myocardial ischemia misc dP/dt misc Hemodynamic model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cardiovascular engineering |
hierarchy_parent_id |
325609152 |
dewey-tens |
610 - Medicine & health |
hierarchy_top_title |
Cardiovascular engineering |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325609152 (DE-600)2037838-5 |
title |
A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery |
ctrlnum |
(DE-627)SPR011291850 (SPR)s10558-009-9064-5-e |
title_full |
A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery |
author_sort |
Gorenberg, Miguel |
journal |
Cardiovascular engineering |
journalStr |
Cardiovascular engineering |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
container_start_page |
27 |
author_browse |
Gorenberg, Miguel Rotztein, Hector Marmor, Alon |
container_volume |
9 |
class |
610 ASE 44.85 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Gorenberg, Miguel |
doi_str_mv |
10.1007/s10558-009-9064-5 |
dewey-full |
610 |
author2-role |
verfasserin |
title_sort |
new noninvasive device for measuring central ejection dp/dt mathematical foundation of cardiac dp/dt measurement using a model for a collapsible artery |
title_auth |
A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery |
abstract |
Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. |
abstractGer |
Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. |
abstract_unstemmed |
Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_40 GBV_ILN_70 GBV_ILN_702 GBV_ILN_711 GBV_ILN_2027 GBV_ILN_2048 GBV_ILN_2190 |
container_issue |
1 |
title_short |
A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery |
url |
https://dx.doi.org/10.1007/s10558-009-9064-5 |
remote_bool |
true |
author2 |
Rotztein, Hector Marmor, Alon |
author2Str |
Rotztein, Hector Marmor, Alon |
ppnlink |
325609152 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10558-009-9064-5 |
up_date |
2024-07-03T21:44:12.035Z |
_version_ |
1803595863331700736 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR011291850</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519080244.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10558-009-9064-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR011291850</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10558-009-9064-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">610</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">44.85</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorenberg, Miguel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A New Noninvasive Device for Measuring Central Ejection dP/dt Mathematical Foundation of Cardiac dP/dt Measurement Using a Model for a Collapsible Artery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We have developed a novel non-invasive device for the measurement of one of the most sensitive indices of myocardial contractility as represented by the rate of increase of intraventricular pressure (left ventricular dP/dt and arterial dP/dt performance index (dP/$ dt^{ejc} $). Up till now, these parameters could be obtained only by invasive catheterization methods. The new technique is based on the concept of applying multiple successive occlusive pressures on the brachial artery from peak systole to diastole using a inflatable cuff and plotting the values against time intervals that leads to the reconstruction of the central aortic pressure noninvasively. The following describes the computer simulator developed for providing a mathematical foundation of the new sensor. At the core of the simulator lies a hemodynamic model of the blood flow on an artery under externally applied pressure. The purpose of the model is to reproduce the experimental results obtained in studies on patients (Gorenberg et al. in Cardiovasc Eng: 305–311, 2004; Gorenberg et al. in Emerg med J 22 (7): 486–489, 2005) and a animal model where ischemia resulted from balloon inflation during coronary catheterization (Gorenberg and Marmor in J Med Eng Technol, 2006) and to describe correlations between the dP/$ dt^{ejc} $ and other hemodynamic variables. The model has successfully reproduced the trends observed experimentally, providing a solid in-depth understanding of the hemodynamics involved in the new measurement. A high correlation between the dP/$ dt^{ejc} $ and the rate of pressure rise in the aorta during the ejection phase was observed. dP/$ dt^{ejc} $ dependence on other hemodynamic parameters was also investigated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cardiac performance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Myocardial ischemia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">dP/dt</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hemodynamic model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rotztein, Hector</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marmor, Alon</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cardiovascular engineering</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 2001</subfield><subfield code="g">9(2009), 1 vom: März, Seite 27-31</subfield><subfield code="w">(DE-627)325609152</subfield><subfield code="w">(DE-600)2037838-5</subfield><subfield code="x">1573-6806</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:27-31</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10558-009-9064-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_711</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">44.85</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="c">03</subfield><subfield code="h">27-31</subfield></datafield></record></collection>
|
score |
7.400729 |