Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners
Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for paralle...
Ausführliche Beschreibung
Autor*in: |
Kourakos, George [verfasserIn] Harter, Thomas [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Computational geosciences - New York, NY [u.a.] : Springer Science + Business Media B.V., 1997, 18(2014), 5 vom: 01. Juli, Seite 851-867 |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2014 ; number:5 ; day:01 ; month:07 ; pages:851-867 |
Links: |
---|
DOI / URN: |
10.1007/s10596-014-9430-2 |
---|
Katalog-ID: |
SPR011652306 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR011652306 | ||
003 | DE-627 | ||
005 | 20220110225944.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10596-014-9430-2 |2 doi | |
035 | |a (DE-627)SPR011652306 | ||
035 | |a (SPR)s10596-014-9430-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 630 |a 640 |a 550 |q ASE |
084 | |a 38.03 |2 bkl | ||
100 | 1 | |a Kourakos, George |e verfasserin |4 aut | |
245 | 1 | 0 | |a Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. | ||
650 | 4 | |a Non point source pollution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Algebraic multigrid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Diffuse pollution |7 (dpeaa)DE-He213 | |
650 | 4 | |a Parallel computing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Contaminant transport |7 (dpeaa)DE-He213 | |
650 | 4 | |a Streamline simulation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Harter, Thomas |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Computational geosciences |d New York, NY [u.a.] : Springer Science + Business Media B.V., 1997 |g 18(2014), 5 vom: 01. Juli, Seite 851-867 |w (DE-627)312901313 |w (DE-600)2001545-8 |x 1573-1499 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2014 |g number:5 |g day:01 |g month:07 |g pages:851-867 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10596-014-9430-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.03 |q ASE |
951 | |a AR | ||
952 | |d 18 |j 2014 |e 5 |b 01 |c 07 |h 851-867 |
author_variant |
g k gk t h th |
---|---|
matchkey_str |
article:15731499:2014----::aalliuainfrudaennonsucpluinsnagbac |
hierarchy_sort_str |
2014 |
bklnumber |
38.03 |
publishDate |
2014 |
allfields |
10.1007/s10596-014-9430-2 doi (DE-627)SPR011652306 (SPR)s10596-014-9430-2-e DE-627 ger DE-627 rakwb eng 630 640 550 ASE 38.03 bkl Kourakos, George verfasserin aut Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. Non point source pollution (dpeaa)DE-He213 Algebraic multigrid (dpeaa)DE-He213 Diffuse pollution (dpeaa)DE-He213 Parallel computing (dpeaa)DE-He213 Contaminant transport (dpeaa)DE-He213 Streamline simulation (dpeaa)DE-He213 Harter, Thomas verfasserin aut Enthalten in Computational geosciences New York, NY [u.a.] : Springer Science + Business Media B.V., 1997 18(2014), 5 vom: 01. Juli, Seite 851-867 (DE-627)312901313 (DE-600)2001545-8 1573-1499 nnns volume:18 year:2014 number:5 day:01 month:07 pages:851-867 https://dx.doi.org/10.1007/s10596-014-9430-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.03 ASE AR 18 2014 5 01 07 851-867 |
spelling |
10.1007/s10596-014-9430-2 doi (DE-627)SPR011652306 (SPR)s10596-014-9430-2-e DE-627 ger DE-627 rakwb eng 630 640 550 ASE 38.03 bkl Kourakos, George verfasserin aut Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. Non point source pollution (dpeaa)DE-He213 Algebraic multigrid (dpeaa)DE-He213 Diffuse pollution (dpeaa)DE-He213 Parallel computing (dpeaa)DE-He213 Contaminant transport (dpeaa)DE-He213 Streamline simulation (dpeaa)DE-He213 Harter, Thomas verfasserin aut Enthalten in Computational geosciences New York, NY [u.a.] : Springer Science + Business Media B.V., 1997 18(2014), 5 vom: 01. Juli, Seite 851-867 (DE-627)312901313 (DE-600)2001545-8 1573-1499 nnns volume:18 year:2014 number:5 day:01 month:07 pages:851-867 https://dx.doi.org/10.1007/s10596-014-9430-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.03 ASE AR 18 2014 5 01 07 851-867 |
allfields_unstemmed |
10.1007/s10596-014-9430-2 doi (DE-627)SPR011652306 (SPR)s10596-014-9430-2-e DE-627 ger DE-627 rakwb eng 630 640 550 ASE 38.03 bkl Kourakos, George verfasserin aut Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. Non point source pollution (dpeaa)DE-He213 Algebraic multigrid (dpeaa)DE-He213 Diffuse pollution (dpeaa)DE-He213 Parallel computing (dpeaa)DE-He213 Contaminant transport (dpeaa)DE-He213 Streamline simulation (dpeaa)DE-He213 Harter, Thomas verfasserin aut Enthalten in Computational geosciences New York, NY [u.a.] : Springer Science + Business Media B.V., 1997 18(2014), 5 vom: 01. Juli, Seite 851-867 (DE-627)312901313 (DE-600)2001545-8 1573-1499 nnns volume:18 year:2014 number:5 day:01 month:07 pages:851-867 https://dx.doi.org/10.1007/s10596-014-9430-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.03 ASE AR 18 2014 5 01 07 851-867 |
allfieldsGer |
10.1007/s10596-014-9430-2 doi (DE-627)SPR011652306 (SPR)s10596-014-9430-2-e DE-627 ger DE-627 rakwb eng 630 640 550 ASE 38.03 bkl Kourakos, George verfasserin aut Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. Non point source pollution (dpeaa)DE-He213 Algebraic multigrid (dpeaa)DE-He213 Diffuse pollution (dpeaa)DE-He213 Parallel computing (dpeaa)DE-He213 Contaminant transport (dpeaa)DE-He213 Streamline simulation (dpeaa)DE-He213 Harter, Thomas verfasserin aut Enthalten in Computational geosciences New York, NY [u.a.] : Springer Science + Business Media B.V., 1997 18(2014), 5 vom: 01. Juli, Seite 851-867 (DE-627)312901313 (DE-600)2001545-8 1573-1499 nnns volume:18 year:2014 number:5 day:01 month:07 pages:851-867 https://dx.doi.org/10.1007/s10596-014-9430-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.03 ASE AR 18 2014 5 01 07 851-867 |
allfieldsSound |
10.1007/s10596-014-9430-2 doi (DE-627)SPR011652306 (SPR)s10596-014-9430-2-e DE-627 ger DE-627 rakwb eng 630 640 550 ASE 38.03 bkl Kourakos, George verfasserin aut Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. Non point source pollution (dpeaa)DE-He213 Algebraic multigrid (dpeaa)DE-He213 Diffuse pollution (dpeaa)DE-He213 Parallel computing (dpeaa)DE-He213 Contaminant transport (dpeaa)DE-He213 Streamline simulation (dpeaa)DE-He213 Harter, Thomas verfasserin aut Enthalten in Computational geosciences New York, NY [u.a.] : Springer Science + Business Media B.V., 1997 18(2014), 5 vom: 01. Juli, Seite 851-867 (DE-627)312901313 (DE-600)2001545-8 1573-1499 nnns volume:18 year:2014 number:5 day:01 month:07 pages:851-867 https://dx.doi.org/10.1007/s10596-014-9430-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.03 ASE AR 18 2014 5 01 07 851-867 |
language |
English |
source |
Enthalten in Computational geosciences 18(2014), 5 vom: 01. Juli, Seite 851-867 volume:18 year:2014 number:5 day:01 month:07 pages:851-867 |
sourceStr |
Enthalten in Computational geosciences 18(2014), 5 vom: 01. Juli, Seite 851-867 volume:18 year:2014 number:5 day:01 month:07 pages:851-867 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Non point source pollution Algebraic multigrid Diffuse pollution Parallel computing Contaminant transport Streamline simulation |
dewey-raw |
630 |
isfreeaccess_bool |
false |
container_title |
Computational geosciences |
authorswithroles_txt_mv |
Kourakos, George @@aut@@ Harter, Thomas @@aut@@ |
publishDateDaySort_date |
2014-07-01T00:00:00Z |
hierarchy_top_id |
312901313 |
dewey-sort |
3630 |
id |
SPR011652306 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR011652306</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110225944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10596-014-9430-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR011652306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10596-014-9430-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kourakos, George</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non point source pollution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic multigrid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffuse pollution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contaminant transport</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Streamline simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harter, Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational geosciences</subfield><subfield code="d">New York, NY [u.a.] : Springer Science + Business Media B.V., 1997</subfield><subfield code="g">18(2014), 5 vom: 01. Juli, Seite 851-867</subfield><subfield code="w">(DE-627)312901313</subfield><subfield code="w">(DE-600)2001545-8</subfield><subfield code="x">1573-1499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:851-867</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10596-014-9430-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2014</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">851-867</subfield></datafield></record></collection>
|
author |
Kourakos, George |
spellingShingle |
Kourakos, George ddc 630 bkl 38.03 misc Non point source pollution misc Algebraic multigrid misc Diffuse pollution misc Parallel computing misc Contaminant transport misc Streamline simulation Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
authorStr |
Kourakos, George |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312901313 |
format |
electronic Article |
dewey-ones |
630 - Agriculture & related technologies 640 - Home & family management 550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-1499 |
topic_title |
630 640 550 ASE 38.03 bkl Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners Non point source pollution (dpeaa)DE-He213 Algebraic multigrid (dpeaa)DE-He213 Diffuse pollution (dpeaa)DE-He213 Parallel computing (dpeaa)DE-He213 Contaminant transport (dpeaa)DE-He213 Streamline simulation (dpeaa)DE-He213 |
topic |
ddc 630 bkl 38.03 misc Non point source pollution misc Algebraic multigrid misc Diffuse pollution misc Parallel computing misc Contaminant transport misc Streamline simulation |
topic_unstemmed |
ddc 630 bkl 38.03 misc Non point source pollution misc Algebraic multigrid misc Diffuse pollution misc Parallel computing misc Contaminant transport misc Streamline simulation |
topic_browse |
ddc 630 bkl 38.03 misc Non point source pollution misc Algebraic multigrid misc Diffuse pollution misc Parallel computing misc Contaminant transport misc Streamline simulation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Computational geosciences |
hierarchy_parent_id |
312901313 |
dewey-tens |
630 - Agriculture 640 - Home & family management 550 - Earth sciences & geology |
hierarchy_top_title |
Computational geosciences |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)312901313 (DE-600)2001545-8 |
title |
Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
ctrlnum |
(DE-627)SPR011652306 (SPR)s10596-014-9430-2-e |
title_full |
Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
author_sort |
Kourakos, George |
journal |
Computational geosciences |
journalStr |
Computational geosciences |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology 500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
851 |
author_browse |
Kourakos, George Harter, Thomas |
container_volume |
18 |
class |
630 640 550 ASE 38.03 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kourakos, George |
doi_str_mv |
10.1007/s10596-014-9430-2 |
dewey-full |
630 640 550 |
author2-role |
verfasserin |
title_sort |
parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
title_auth |
Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
abstract |
Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. |
abstractGer |
Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. |
abstract_unstemmed |
Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GEO SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners |
url |
https://dx.doi.org/10.1007/s10596-014-9430-2 |
remote_bool |
true |
author2 |
Harter, Thomas |
author2Str |
Harter, Thomas |
ppnlink |
312901313 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10596-014-9430-2 |
up_date |
2024-07-03T23:49:49.947Z |
_version_ |
1803603767406362624 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR011652306</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220110225944.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10596-014-9430-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR011652306</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10596-014-9430-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">630</subfield><subfield code="a">640</subfield><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.03</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kourakos, George</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel simulation of groundwater non-point source pollution using algebraic multigrid preconditioners</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The simulation of non-point source pollution in agricultural basins is a computationally demanding process due to the large number of individual sources and potential pollution receptors (e.g., drinking water wells). In this study, we present an efficient computational framework for parallel simulation of diffuse pollution in such groundwater basins. To derive a highly detailed velocity field, we employed algebraic multigrid (AMG) preconditioners to solve the groundwater flow equation. We compare two variants of AMG implementations, the multilevel preconditioning provided by Trilinos and the BoomerAMG provided by HYPRE. We also perform a sensitivity analysis on the configuration of AMG methods to evaluate the application of these libraries to groundwater flow problems. For the transport simulation of diffuse contamination, we use the streamline approach, which decomposes the 3D transport problem into a large number of 1D problems that can be executed in parallel. The proposed framework is applied to a 2,600-$ km^{2} $ groundwater basin in California discretized into a grid with over 11 million degrees of freedom. Using a Monte Carlo approach with 200 nitrate loading realizations at the aquifer surface, we perform a stochastic analysis to quantify nitrate breakthrough prediction uncertainty at over 1,500 wells due to random, temporally distributed nitrate loading. The results show that there is a significant time lag between loading and aquifer response at production wells. Generally, typical production wells respond after 5–50 years depending on well depth and screen length, while the prediction uncertainty for nitrate in individual wells is very large—approximately twice the drinking water limit for nitrate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non point source pollution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic multigrid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Diffuse pollution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parallel computing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contaminant transport</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Streamline simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Harter, Thomas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Computational geosciences</subfield><subfield code="d">New York, NY [u.a.] : Springer Science + Business Media B.V., 1997</subfield><subfield code="g">18(2014), 5 vom: 01. Juli, Seite 851-867</subfield><subfield code="w">(DE-627)312901313</subfield><subfield code="w">(DE-600)2001545-8</subfield><subfield code="x">1573-1499</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:5</subfield><subfield code="g">day:01</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:851-867</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10596-014-9430-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.03</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2014</subfield><subfield code="e">5</subfield><subfield code="b">01</subfield><subfield code="c">07</subfield><subfield code="h">851-867</subfield></datafield></record></collection>
|
score |
7.4010506 |