A 220- to 299-GHz CMOS Terahertz Detector
Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc grou...
Ausführliche Beschreibung
Autor*in: |
Liu, Zhao-yang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of infrared and millimeter waves - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980, 40(2019), 6 vom: 27. Apr., Seite 606-619 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2019 ; number:6 ; day:27 ; month:04 ; pages:606-619 |
Links: |
---|
DOI / URN: |
10.1007/s10762-019-00592-2 |
---|
Katalog-ID: |
SPR013071343 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR013071343 | ||
003 | DE-627 | ||
005 | 20230509112203.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201005s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10762-019-00592-2 |2 doi | |
035 | |a (DE-627)SPR013071343 | ||
035 | |a (SPR)s10762-019-00592-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Liu, Zhao-yang |e verfasserin |4 aut | |
245 | 1 | 2 | |a A 220- to 299-GHz CMOS Terahertz Detector |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. | ||
650 | 4 | |a CMOS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Terahertz detector |7 (dpeaa)DE-He213 | |
650 | 4 | |a Terahertz imaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a Square loop antenna |7 (dpeaa)DE-He213 | |
700 | 1 | |a Qi, Feng |4 aut | |
700 | 1 | |a Wang, Ye-long |4 aut | |
700 | 1 | |a Liu, Peng-xiang |4 aut | |
700 | 1 | |a Li, Wei-fan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of infrared and millimeter waves |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980 |g 40(2019), 6 vom: 27. Apr., Seite 606-619 |w (DE-627)319583627 |w (DE-600)2016007-0 |x 1572-9559 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2019 |g number:6 |g day:27 |g month:04 |g pages:606-619 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10762-019-00592-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 40 |j 2019 |e 6 |b 27 |c 04 |h 606-619 |
author_variant |
z y l zyl f q fq y l w ylw p x l pxl w f l wfl |
---|---|
matchkey_str |
article:15729559:2019----::20o9gzmseaet |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s10762-019-00592-2 doi (DE-627)SPR013071343 (SPR)s10762-019-00592-2-e DE-627 ger DE-627 rakwb eng Liu, Zhao-yang verfasserin aut A 220- to 299-GHz CMOS Terahertz Detector 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. CMOS (dpeaa)DE-He213 Terahertz detector (dpeaa)DE-He213 Terahertz imaging (dpeaa)DE-He213 Square loop antenna (dpeaa)DE-He213 Qi, Feng aut Wang, Ye-long aut Liu, Peng-xiang aut Li, Wei-fan aut Enthalten in International journal of infrared and millimeter waves Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980 40(2019), 6 vom: 27. Apr., Seite 606-619 (DE-627)319583627 (DE-600)2016007-0 1572-9559 nnns volume:40 year:2019 number:6 day:27 month:04 pages:606-619 https://dx.doi.org/10.1007/s10762-019-00592-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 40 2019 6 27 04 606-619 |
spelling |
10.1007/s10762-019-00592-2 doi (DE-627)SPR013071343 (SPR)s10762-019-00592-2-e DE-627 ger DE-627 rakwb eng Liu, Zhao-yang verfasserin aut A 220- to 299-GHz CMOS Terahertz Detector 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. CMOS (dpeaa)DE-He213 Terahertz detector (dpeaa)DE-He213 Terahertz imaging (dpeaa)DE-He213 Square loop antenna (dpeaa)DE-He213 Qi, Feng aut Wang, Ye-long aut Liu, Peng-xiang aut Li, Wei-fan aut Enthalten in International journal of infrared and millimeter waves Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980 40(2019), 6 vom: 27. Apr., Seite 606-619 (DE-627)319583627 (DE-600)2016007-0 1572-9559 nnns volume:40 year:2019 number:6 day:27 month:04 pages:606-619 https://dx.doi.org/10.1007/s10762-019-00592-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 40 2019 6 27 04 606-619 |
allfields_unstemmed |
10.1007/s10762-019-00592-2 doi (DE-627)SPR013071343 (SPR)s10762-019-00592-2-e DE-627 ger DE-627 rakwb eng Liu, Zhao-yang verfasserin aut A 220- to 299-GHz CMOS Terahertz Detector 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. CMOS (dpeaa)DE-He213 Terahertz detector (dpeaa)DE-He213 Terahertz imaging (dpeaa)DE-He213 Square loop antenna (dpeaa)DE-He213 Qi, Feng aut Wang, Ye-long aut Liu, Peng-xiang aut Li, Wei-fan aut Enthalten in International journal of infrared and millimeter waves Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980 40(2019), 6 vom: 27. Apr., Seite 606-619 (DE-627)319583627 (DE-600)2016007-0 1572-9559 nnns volume:40 year:2019 number:6 day:27 month:04 pages:606-619 https://dx.doi.org/10.1007/s10762-019-00592-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 40 2019 6 27 04 606-619 |
allfieldsGer |
10.1007/s10762-019-00592-2 doi (DE-627)SPR013071343 (SPR)s10762-019-00592-2-e DE-627 ger DE-627 rakwb eng Liu, Zhao-yang verfasserin aut A 220- to 299-GHz CMOS Terahertz Detector 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. CMOS (dpeaa)DE-He213 Terahertz detector (dpeaa)DE-He213 Terahertz imaging (dpeaa)DE-He213 Square loop antenna (dpeaa)DE-He213 Qi, Feng aut Wang, Ye-long aut Liu, Peng-xiang aut Li, Wei-fan aut Enthalten in International journal of infrared and millimeter waves Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980 40(2019), 6 vom: 27. Apr., Seite 606-619 (DE-627)319583627 (DE-600)2016007-0 1572-9559 nnns volume:40 year:2019 number:6 day:27 month:04 pages:606-619 https://dx.doi.org/10.1007/s10762-019-00592-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 40 2019 6 27 04 606-619 |
allfieldsSound |
10.1007/s10762-019-00592-2 doi (DE-627)SPR013071343 (SPR)s10762-019-00592-2-e DE-627 ger DE-627 rakwb eng Liu, Zhao-yang verfasserin aut A 220- to 299-GHz CMOS Terahertz Detector 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. CMOS (dpeaa)DE-He213 Terahertz detector (dpeaa)DE-He213 Terahertz imaging (dpeaa)DE-He213 Square loop antenna (dpeaa)DE-He213 Qi, Feng aut Wang, Ye-long aut Liu, Peng-xiang aut Li, Wei-fan aut Enthalten in International journal of infrared and millimeter waves Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980 40(2019), 6 vom: 27. Apr., Seite 606-619 (DE-627)319583627 (DE-600)2016007-0 1572-9559 nnns volume:40 year:2019 number:6 day:27 month:04 pages:606-619 https://dx.doi.org/10.1007/s10762-019-00592-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 40 2019 6 27 04 606-619 |
language |
English |
source |
Enthalten in International journal of infrared and millimeter waves 40(2019), 6 vom: 27. Apr., Seite 606-619 volume:40 year:2019 number:6 day:27 month:04 pages:606-619 |
sourceStr |
Enthalten in International journal of infrared and millimeter waves 40(2019), 6 vom: 27. Apr., Seite 606-619 volume:40 year:2019 number:6 day:27 month:04 pages:606-619 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
CMOS Terahertz detector Terahertz imaging Square loop antenna |
isfreeaccess_bool |
false |
container_title |
International journal of infrared and millimeter waves |
authorswithroles_txt_mv |
Liu, Zhao-yang @@aut@@ Qi, Feng @@aut@@ Wang, Ye-long @@aut@@ Liu, Peng-xiang @@aut@@ Li, Wei-fan @@aut@@ |
publishDateDaySort_date |
2019-04-27T00:00:00Z |
hierarchy_top_id |
319583627 |
id |
SPR013071343 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR013071343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112203.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10762-019-00592-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR013071343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10762-019-00592-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhao-yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A 220- to 299-GHz CMOS Terahertz Detector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terahertz detector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terahertz imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Square loop antenna</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ye-long</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Peng-xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wei-fan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of infrared and millimeter waves</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980</subfield><subfield code="g">40(2019), 6 vom: 27. Apr., Seite 606-619</subfield><subfield code="w">(DE-627)319583627</subfield><subfield code="w">(DE-600)2016007-0</subfield><subfield code="x">1572-9559</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:27</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:606-619</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10762-019-00592-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">27</subfield><subfield code="c">04</subfield><subfield code="h">606-619</subfield></datafield></record></collection>
|
author |
Liu, Zhao-yang |
spellingShingle |
Liu, Zhao-yang misc CMOS misc Terahertz detector misc Terahertz imaging misc Square loop antenna A 220- to 299-GHz CMOS Terahertz Detector |
authorStr |
Liu, Zhao-yang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)319583627 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9559 |
topic_title |
A 220- to 299-GHz CMOS Terahertz Detector CMOS (dpeaa)DE-He213 Terahertz detector (dpeaa)DE-He213 Terahertz imaging (dpeaa)DE-He213 Square loop antenna (dpeaa)DE-He213 |
topic |
misc CMOS misc Terahertz detector misc Terahertz imaging misc Square loop antenna |
topic_unstemmed |
misc CMOS misc Terahertz detector misc Terahertz imaging misc Square loop antenna |
topic_browse |
misc CMOS misc Terahertz detector misc Terahertz imaging misc Square loop antenna |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International journal of infrared and millimeter waves |
hierarchy_parent_id |
319583627 |
hierarchy_top_title |
International journal of infrared and millimeter waves |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)319583627 (DE-600)2016007-0 |
title |
A 220- to 299-GHz CMOS Terahertz Detector |
ctrlnum |
(DE-627)SPR013071343 (SPR)s10762-019-00592-2-e |
title_full |
A 220- to 299-GHz CMOS Terahertz Detector |
author_sort |
Liu, Zhao-yang |
journal |
International journal of infrared and millimeter waves |
journalStr |
International journal of infrared and millimeter waves |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
606 |
author_browse |
Liu, Zhao-yang Qi, Feng Wang, Ye-long Liu, Peng-xiang Li, Wei-fan |
container_volume |
40 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Zhao-yang |
doi_str_mv |
10.1007/s10762-019-00592-2 |
title_sort |
220- to 299-ghz cmos terahertz detector |
title_auth |
A 220- to 299-GHz CMOS Terahertz Detector |
abstract |
Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $. © Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
6 |
title_short |
A 220- to 299-GHz CMOS Terahertz Detector |
url |
https://dx.doi.org/10.1007/s10762-019-00592-2 |
remote_bool |
true |
author2 |
Qi, Feng Wang, Ye-long Liu, Peng-xiang Li, Wei-fan |
author2Str |
Qi, Feng Wang, Ye-long Liu, Peng-xiang Li, Wei-fan |
ppnlink |
319583627 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10762-019-00592-2 |
up_date |
2024-07-03T17:14:36.069Z |
_version_ |
1803578901609316352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR013071343</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230509112203.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201005s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10762-019-00592-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR013071343</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10762-019-00592-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Zhao-yang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A 220- to 299-GHz CMOS Terahertz Detector</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2019. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a terahertz (THz) detector in a 180-nm standard CMOS process. The detector consists of a square loop antenna and an NMOS transistor. The antenna has two feed ports. One is connected to the source of the transistor and the other is grounded to provide the source a dc ground. To improve the power transfer efficiency between the antenna and the transistor, impedance matching between them is needed. It is concluded that in order to increase the voltage responsivity of the detector, impedance matching should be achieved by changing the impedance of the antenna rather than by changing the impedance of the transistor. The parasitic capacitance and inductance of the gate power supply line will affect the antenna-transistor impedance matching. An open microstrip transmission line connected to the gate is designed to eliminate this influence. Measurement results show that the detector can detect THz radiation in the frequency range of 220 to 299 GHz. At 244 GHz, the detector achieves a best voltage responsivity of 2497 V/W and a noise equivalent power (NEP) of 357 pW/$ Hz^{1/2} $.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CMOS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terahertz detector</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terahertz imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Square loop antenna</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qi, Feng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Ye-long</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Peng-xiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Wei-fan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of infrared and millimeter waves</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1980</subfield><subfield code="g">40(2019), 6 vom: 27. Apr., Seite 606-619</subfield><subfield code="w">(DE-627)319583627</subfield><subfield code="w">(DE-600)2016007-0</subfield><subfield code="x">1572-9559</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:6</subfield><subfield code="g">day:27</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:606-619</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10762-019-00592-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2019</subfield><subfield code="e">6</subfield><subfield code="b">27</subfield><subfield code="c">04</subfield><subfield code="h">606-619</subfield></datafield></record></collection>
|
score |
7.4011126 |