MPTP 0.2: Design, Implementation, and Initial Experiments
Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem prove...
Ausführliche Beschreibung
Autor*in: |
Urban, Josef [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of automated reasoning - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985, 37(2006), 1-2 vom: Aug., Seite 21-43 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2006 ; number:1-2 ; month:08 ; pages:21-43 |
Links: |
---|
DOI / URN: |
10.1007/s10817-006-9032-3 |
---|
Katalog-ID: |
SPR013546945 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR013546945 | ||
003 | DE-627 | ||
005 | 20220111003012.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2006 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10817-006-9032-3 |2 doi | |
035 | |a (DE-627)SPR013546945 | ||
035 | |a (SPR)s10817-006-9032-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q ASE |
084 | |a 54.71 |2 bkl | ||
100 | 1 | |a Urban, Josef |e verfasserin |4 aut | |
245 | 1 | 0 | |a MPTP 0.2: Design, Implementation, and Initial Experiments |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. | ||
773 | 0 | 8 | |i Enthalten in |t Journal of automated reasoning |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985 |g 37(2006), 1-2 vom: Aug., Seite 21-43 |w (DE-627)271179589 |w (DE-600)1479376-3 |x 1573-0670 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2006 |g number:1-2 |g month:08 |g pages:21-43 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10817-006-9032-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.71 |q ASE |
951 | |a AR | ||
952 | |d 37 |j 2006 |e 1-2 |c 08 |h 21-43 |
author_variant |
j u ju |
---|---|
matchkey_str |
article:15730670:2006----::pp2einmlmnainnii |
hierarchy_sort_str |
2006 |
bklnumber |
54.71 |
publishDate |
2006 |
allfields |
10.1007/s10817-006-9032-3 doi (DE-627)SPR013546945 (SPR)s10817-006-9032-3-e DE-627 ger DE-627 rakwb eng 004 ASE 54.71 bkl Urban, Josef verfasserin aut MPTP 0.2: Design, Implementation, and Initial Experiments 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. Enthalten in Journal of automated reasoning Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985 37(2006), 1-2 vom: Aug., Seite 21-43 (DE-627)271179589 (DE-600)1479376-3 1573-0670 nnns volume:37 year:2006 number:1-2 month:08 pages:21-43 https://dx.doi.org/10.1007/s10817-006-9032-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.71 ASE AR 37 2006 1-2 08 21-43 |
spelling |
10.1007/s10817-006-9032-3 doi (DE-627)SPR013546945 (SPR)s10817-006-9032-3-e DE-627 ger DE-627 rakwb eng 004 ASE 54.71 bkl Urban, Josef verfasserin aut MPTP 0.2: Design, Implementation, and Initial Experiments 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. Enthalten in Journal of automated reasoning Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985 37(2006), 1-2 vom: Aug., Seite 21-43 (DE-627)271179589 (DE-600)1479376-3 1573-0670 nnns volume:37 year:2006 number:1-2 month:08 pages:21-43 https://dx.doi.org/10.1007/s10817-006-9032-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.71 ASE AR 37 2006 1-2 08 21-43 |
allfields_unstemmed |
10.1007/s10817-006-9032-3 doi (DE-627)SPR013546945 (SPR)s10817-006-9032-3-e DE-627 ger DE-627 rakwb eng 004 ASE 54.71 bkl Urban, Josef verfasserin aut MPTP 0.2: Design, Implementation, and Initial Experiments 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. Enthalten in Journal of automated reasoning Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985 37(2006), 1-2 vom: Aug., Seite 21-43 (DE-627)271179589 (DE-600)1479376-3 1573-0670 nnns volume:37 year:2006 number:1-2 month:08 pages:21-43 https://dx.doi.org/10.1007/s10817-006-9032-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.71 ASE AR 37 2006 1-2 08 21-43 |
allfieldsGer |
10.1007/s10817-006-9032-3 doi (DE-627)SPR013546945 (SPR)s10817-006-9032-3-e DE-627 ger DE-627 rakwb eng 004 ASE 54.71 bkl Urban, Josef verfasserin aut MPTP 0.2: Design, Implementation, and Initial Experiments 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. Enthalten in Journal of automated reasoning Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985 37(2006), 1-2 vom: Aug., Seite 21-43 (DE-627)271179589 (DE-600)1479376-3 1573-0670 nnns volume:37 year:2006 number:1-2 month:08 pages:21-43 https://dx.doi.org/10.1007/s10817-006-9032-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.71 ASE AR 37 2006 1-2 08 21-43 |
allfieldsSound |
10.1007/s10817-006-9032-3 doi (DE-627)SPR013546945 (SPR)s10817-006-9032-3-e DE-627 ger DE-627 rakwb eng 004 ASE 54.71 bkl Urban, Josef verfasserin aut MPTP 0.2: Design, Implementation, and Initial Experiments 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. Enthalten in Journal of automated reasoning Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985 37(2006), 1-2 vom: Aug., Seite 21-43 (DE-627)271179589 (DE-600)1479376-3 1573-0670 nnns volume:37 year:2006 number:1-2 month:08 pages:21-43 https://dx.doi.org/10.1007/s10817-006-9032-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.71 ASE AR 37 2006 1-2 08 21-43 |
language |
English |
source |
Enthalten in Journal of automated reasoning 37(2006), 1-2 vom: Aug., Seite 21-43 volume:37 year:2006 number:1-2 month:08 pages:21-43 |
sourceStr |
Enthalten in Journal of automated reasoning 37(2006), 1-2 vom: Aug., Seite 21-43 volume:37 year:2006 number:1-2 month:08 pages:21-43 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of automated reasoning |
authorswithroles_txt_mv |
Urban, Josef @@aut@@ |
publishDateDaySort_date |
2006-08-01T00:00:00Z |
hierarchy_top_id |
271179589 |
dewey-sort |
14 |
id |
SPR013546945 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR013546945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111003012.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10817-006-9032-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR013546945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10817-006-9032-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Urban, Josef</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MPTP 0.2: Design, Implementation, and Initial Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of automated reasoning</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985</subfield><subfield code="g">37(2006), 1-2 vom: Aug., Seite 21-43</subfield><subfield code="w">(DE-627)271179589</subfield><subfield code="w">(DE-600)1479376-3</subfield><subfield code="x">1573-0670</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:21-43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10817-006-9032-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.71</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2006</subfield><subfield code="e">1-2</subfield><subfield code="c">08</subfield><subfield code="h">21-43</subfield></datafield></record></collection>
|
author |
Urban, Josef |
spellingShingle |
Urban, Josef ddc 004 bkl 54.71 MPTP 0.2: Design, Implementation, and Initial Experiments |
authorStr |
Urban, Josef |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271179589 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-0670 |
topic_title |
004 ASE 54.71 bkl MPTP 0.2: Design, Implementation, and Initial Experiments |
topic |
ddc 004 bkl 54.71 |
topic_unstemmed |
ddc 004 bkl 54.71 |
topic_browse |
ddc 004 bkl 54.71 |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of automated reasoning |
hierarchy_parent_id |
271179589 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of automated reasoning |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271179589 (DE-600)1479376-3 |
title |
MPTP 0.2: Design, Implementation, and Initial Experiments |
ctrlnum |
(DE-627)SPR013546945 (SPR)s10817-006-9032-3-e |
title_full |
MPTP 0.2: Design, Implementation, and Initial Experiments |
author_sort |
Urban, Josef |
journal |
Journal of automated reasoning |
journalStr |
Journal of automated reasoning |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
21 |
author_browse |
Urban, Josef |
container_volume |
37 |
class |
004 ASE 54.71 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Urban, Josef |
doi_str_mv |
10.1007/s10817-006-9032-3 |
dewey-full |
004 |
title_sort |
mptp 0.2: design, implementation, and initial experiments |
title_auth |
MPTP 0.2: Design, Implementation, and Initial Experiments |
abstract |
Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. |
abstractGer |
Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. |
abstract_unstemmed |
Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1-2 |
title_short |
MPTP 0.2: Design, Implementation, and Initial Experiments |
url |
https://dx.doi.org/10.1007/s10817-006-9032-3 |
remote_bool |
true |
ppnlink |
271179589 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10817-006-9032-3 |
up_date |
2024-07-03T20:29:50.115Z |
_version_ |
1803591184672620544 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR013546945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111003012.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10817-006-9032-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR013546945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10817-006-9032-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.71</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Urban, Josef</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">MPTP 0.2: Design, Implementation, and Initial Experiments</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper describes the second version of the Mizar Problems for Theorem Proving (MPTP) system and first experimental results obtained with it. The goal of the MPTP project is to make the large formal Mizar Mathematical Library (MML) available to current first-order automated theorem provers (ATPs) (and vice versa) and to boost the development of domain-based, knowledge-based, and generally AI-based ATP methods. This version of MPTP switches to a generic extended TPTP syntax that adds term-dependent sorts and abstract (Fraenkel) terms to the TPTP syntax. We describe these extensions and explain how they are transformed by MPTP to standard TPTP syntax using relativization of sorts and deanonymization of abstract terms. Full Mizar proofs are now exported and also encoded in the extended TPTP syntax, allowing a number of ATP experiments. This covers, for example, consistent handling of proof-local constants and proof-local lemmas and translating of a number of Mizar proof constructs into the TPTP formalism. The proofs using second-order Mizar schemes are now handled by the system, too, by remembering (and, if necessary, abstracting from the proof context) the first-order instances that were actually used. These features necessitated changes in Mizar, in the Mizar-to-TPTP exporter, and in the problem-creating tools. Mizar has been reimplemented to produce and use natively a detailed XML format, suitable for communication with other tools. The Mizar-to-TPTP exporter is now just a XSLT stylesheet translating the XML tree to the TPTP syntax. The problem creation and other MPTP processing tasks are now implemented in about 1,300 lines of Prolog. All these changes have made MPTP more generic, more complete, and more correct. The largest remaining issue is the handling of the Mizar arithmetical evaluations. We describe several initial ATP experiments, both on the easy and on the hard MML problems, sometimes assisted by machine learning. It is shown that on the nonarithmetical problems, countersatisfiability (completions) is no longer detected by the ATP systems, suggesting that the ‘Mizar deconstruction’ done by MPTP is in this case already complete. About every fifth nonarithmetical theorem is proved in a fully autonomous mode, in which the premises are selected by a machine-learning system trained on previous proofs. In 329 of these cases, the newly discovered proofs are shorter than the MML originals and therefore are likely to be used for MML refactoring. This situation suggests that even a simple inductive or deductive system trained on formal mathematics can be sometimes smarter than MML authors and usable for general discovery in mathematics.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of automated reasoning</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1985</subfield><subfield code="g">37(2006), 1-2 vom: Aug., Seite 21-43</subfield><subfield code="w">(DE-627)271179589</subfield><subfield code="w">(DE-600)1479376-3</subfield><subfield code="x">1573-0670</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:1-2</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:21-43</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10817-006-9032-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.71</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2006</subfield><subfield code="e">1-2</subfield><subfield code="c">08</subfield><subfield code="h">21-43</subfield></datafield></record></collection>
|
score |
7.4011583 |