NODAR: mining globally distributed substructures from a single labeled graph
Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In...
Ausführliche Beschreibung
Autor*in: |
Hellal, Aya [verfasserIn] Romdhane, Lotfi Ben [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of intelligent information systems - Dordrecht : Springer Science + Business Media B.V, 1992, 40(2012), 1 vom: 04. Juli, Seite 1-15 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2012 ; number:1 ; day:04 ; month:07 ; pages:1-15 |
Links: |
---|
DOI / URN: |
10.1007/s10844-012-0213-8 |
---|
Katalog-ID: |
SPR013669893 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR013669893 | ||
003 | DE-627 | ||
005 | 20220111003409.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10844-012-0213-8 |2 doi | |
035 | |a (DE-627)SPR013669893 | ||
035 | |a (SPR)s10844-012-0213-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q ASE |
084 | |a 54.64 |2 bkl | ||
084 | |a 06.74 |2 bkl | ||
084 | |a 54.72 |2 bkl | ||
100 | 1 | |a Hellal, Aya |e verfasserin |4 aut | |
245 | 1 | 0 | |a NODAR: mining globally distributed substructures from a single labeled graph |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. | ||
650 | 4 | |a Frequent subgraph mining |7 (dpeaa)DE-He213 | |
650 | 4 | |a Subgraph isomorphism |7 (dpeaa)DE-He213 | |
650 | 4 | |a DFS code |7 (dpeaa)DE-He213 | |
650 | 4 | |a SMNOES measure |7 (dpeaa)DE-He213 | |
650 | 4 | |a BFS |7 (dpeaa)DE-He213 | |
700 | 1 | |a Romdhane, Lotfi Ben |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of intelligent information systems |d Dordrecht : Springer Science + Business Media B.V, 1992 |g 40(2012), 1 vom: 04. Juli, Seite 1-15 |w (DE-627)269539131 |w (DE-600)1475525-7 |x 1573-7675 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2012 |g number:1 |g day:04 |g month:07 |g pages:1-15 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10844-012-0213-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 54.64 |q ASE |
936 | b | k | |a 06.74 |q ASE |
936 | b | k | |a 54.72 |q ASE |
951 | |a AR | ||
952 | |d 40 |j 2012 |e 1 |b 04 |c 07 |h 1-15 |
author_variant |
a h ah l b r lb lbr |
---|---|
matchkey_str |
article:15737675:2012----::oamnngoaldsrbtdusrcuefoa |
hierarchy_sort_str |
2012 |
bklnumber |
54.64 06.74 54.72 |
publishDate |
2012 |
allfields |
10.1007/s10844-012-0213-8 doi (DE-627)SPR013669893 (SPR)s10844-012-0213-8-e DE-627 ger DE-627 rakwb eng 004 ASE 54.64 bkl 06.74 bkl 54.72 bkl Hellal, Aya verfasserin aut NODAR: mining globally distributed substructures from a single labeled graph 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. Frequent subgraph mining (dpeaa)DE-He213 Subgraph isomorphism (dpeaa)DE-He213 DFS code (dpeaa)DE-He213 SMNOES measure (dpeaa)DE-He213 BFS (dpeaa)DE-He213 Romdhane, Lotfi Ben verfasserin aut Enthalten in Journal of intelligent information systems Dordrecht : Springer Science + Business Media B.V, 1992 40(2012), 1 vom: 04. Juli, Seite 1-15 (DE-627)269539131 (DE-600)1475525-7 1573-7675 nnns volume:40 year:2012 number:1 day:04 month:07 pages:1-15 https://dx.doi.org/10.1007/s10844-012-0213-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.64 ASE 06.74 ASE 54.72 ASE AR 40 2012 1 04 07 1-15 |
spelling |
10.1007/s10844-012-0213-8 doi (DE-627)SPR013669893 (SPR)s10844-012-0213-8-e DE-627 ger DE-627 rakwb eng 004 ASE 54.64 bkl 06.74 bkl 54.72 bkl Hellal, Aya verfasserin aut NODAR: mining globally distributed substructures from a single labeled graph 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. Frequent subgraph mining (dpeaa)DE-He213 Subgraph isomorphism (dpeaa)DE-He213 DFS code (dpeaa)DE-He213 SMNOES measure (dpeaa)DE-He213 BFS (dpeaa)DE-He213 Romdhane, Lotfi Ben verfasserin aut Enthalten in Journal of intelligent information systems Dordrecht : Springer Science + Business Media B.V, 1992 40(2012), 1 vom: 04. Juli, Seite 1-15 (DE-627)269539131 (DE-600)1475525-7 1573-7675 nnns volume:40 year:2012 number:1 day:04 month:07 pages:1-15 https://dx.doi.org/10.1007/s10844-012-0213-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.64 ASE 06.74 ASE 54.72 ASE AR 40 2012 1 04 07 1-15 |
allfields_unstemmed |
10.1007/s10844-012-0213-8 doi (DE-627)SPR013669893 (SPR)s10844-012-0213-8-e DE-627 ger DE-627 rakwb eng 004 ASE 54.64 bkl 06.74 bkl 54.72 bkl Hellal, Aya verfasserin aut NODAR: mining globally distributed substructures from a single labeled graph 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. Frequent subgraph mining (dpeaa)DE-He213 Subgraph isomorphism (dpeaa)DE-He213 DFS code (dpeaa)DE-He213 SMNOES measure (dpeaa)DE-He213 BFS (dpeaa)DE-He213 Romdhane, Lotfi Ben verfasserin aut Enthalten in Journal of intelligent information systems Dordrecht : Springer Science + Business Media B.V, 1992 40(2012), 1 vom: 04. Juli, Seite 1-15 (DE-627)269539131 (DE-600)1475525-7 1573-7675 nnns volume:40 year:2012 number:1 day:04 month:07 pages:1-15 https://dx.doi.org/10.1007/s10844-012-0213-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.64 ASE 06.74 ASE 54.72 ASE AR 40 2012 1 04 07 1-15 |
allfieldsGer |
10.1007/s10844-012-0213-8 doi (DE-627)SPR013669893 (SPR)s10844-012-0213-8-e DE-627 ger DE-627 rakwb eng 004 ASE 54.64 bkl 06.74 bkl 54.72 bkl Hellal, Aya verfasserin aut NODAR: mining globally distributed substructures from a single labeled graph 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. Frequent subgraph mining (dpeaa)DE-He213 Subgraph isomorphism (dpeaa)DE-He213 DFS code (dpeaa)DE-He213 SMNOES measure (dpeaa)DE-He213 BFS (dpeaa)DE-He213 Romdhane, Lotfi Ben verfasserin aut Enthalten in Journal of intelligent information systems Dordrecht : Springer Science + Business Media B.V, 1992 40(2012), 1 vom: 04. Juli, Seite 1-15 (DE-627)269539131 (DE-600)1475525-7 1573-7675 nnns volume:40 year:2012 number:1 day:04 month:07 pages:1-15 https://dx.doi.org/10.1007/s10844-012-0213-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.64 ASE 06.74 ASE 54.72 ASE AR 40 2012 1 04 07 1-15 |
allfieldsSound |
10.1007/s10844-012-0213-8 doi (DE-627)SPR013669893 (SPR)s10844-012-0213-8-e DE-627 ger DE-627 rakwb eng 004 ASE 54.64 bkl 06.74 bkl 54.72 bkl Hellal, Aya verfasserin aut NODAR: mining globally distributed substructures from a single labeled graph 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. Frequent subgraph mining (dpeaa)DE-He213 Subgraph isomorphism (dpeaa)DE-He213 DFS code (dpeaa)DE-He213 SMNOES measure (dpeaa)DE-He213 BFS (dpeaa)DE-He213 Romdhane, Lotfi Ben verfasserin aut Enthalten in Journal of intelligent information systems Dordrecht : Springer Science + Business Media B.V, 1992 40(2012), 1 vom: 04. Juli, Seite 1-15 (DE-627)269539131 (DE-600)1475525-7 1573-7675 nnns volume:40 year:2012 number:1 day:04 month:07 pages:1-15 https://dx.doi.org/10.1007/s10844-012-0213-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 54.64 ASE 06.74 ASE 54.72 ASE AR 40 2012 1 04 07 1-15 |
language |
English |
source |
Enthalten in Journal of intelligent information systems 40(2012), 1 vom: 04. Juli, Seite 1-15 volume:40 year:2012 number:1 day:04 month:07 pages:1-15 |
sourceStr |
Enthalten in Journal of intelligent information systems 40(2012), 1 vom: 04. Juli, Seite 1-15 volume:40 year:2012 number:1 day:04 month:07 pages:1-15 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Frequent subgraph mining Subgraph isomorphism DFS code SMNOES measure BFS |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of intelligent information systems |
authorswithroles_txt_mv |
Hellal, Aya @@aut@@ Romdhane, Lotfi Ben @@aut@@ |
publishDateDaySort_date |
2012-07-04T00:00:00Z |
hierarchy_top_id |
269539131 |
dewey-sort |
14 |
id |
SPR013669893 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR013669893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111003409.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10844-012-0213-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR013669893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10844-012-0213-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">06.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hellal, Aya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NODAR: mining globally distributed substructures from a single labeled graph</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequent subgraph mining</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgraph isomorphism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFS code</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SMNOES measure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BFS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romdhane, Lotfi Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent information systems</subfield><subfield code="d">Dordrecht : Springer Science + Business Media B.V, 1992</subfield><subfield code="g">40(2012), 1 vom: 04. Juli, Seite 1-15</subfield><subfield code="w">(DE-627)269539131</subfield><subfield code="w">(DE-600)1475525-7</subfield><subfield code="x">1573-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1-15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10844-012-0213-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.64</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">06.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield><subfield code="h">1-15</subfield></datafield></record></collection>
|
author |
Hellal, Aya |
spellingShingle |
Hellal, Aya ddc 004 bkl 54.64 bkl 06.74 bkl 54.72 misc Frequent subgraph mining misc Subgraph isomorphism misc DFS code misc SMNOES measure misc BFS NODAR: mining globally distributed substructures from a single labeled graph |
authorStr |
Hellal, Aya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269539131 |
format |
electronic Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-7675 |
topic_title |
004 ASE 54.64 bkl 06.74 bkl 54.72 bkl NODAR: mining globally distributed substructures from a single labeled graph Frequent subgraph mining (dpeaa)DE-He213 Subgraph isomorphism (dpeaa)DE-He213 DFS code (dpeaa)DE-He213 SMNOES measure (dpeaa)DE-He213 BFS (dpeaa)DE-He213 |
topic |
ddc 004 bkl 54.64 bkl 06.74 bkl 54.72 misc Frequent subgraph mining misc Subgraph isomorphism misc DFS code misc SMNOES measure misc BFS |
topic_unstemmed |
ddc 004 bkl 54.64 bkl 06.74 bkl 54.72 misc Frequent subgraph mining misc Subgraph isomorphism misc DFS code misc SMNOES measure misc BFS |
topic_browse |
ddc 004 bkl 54.64 bkl 06.74 bkl 54.72 misc Frequent subgraph mining misc Subgraph isomorphism misc DFS code misc SMNOES measure misc BFS |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of intelligent information systems |
hierarchy_parent_id |
269539131 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Journal of intelligent information systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)269539131 (DE-600)1475525-7 |
title |
NODAR: mining globally distributed substructures from a single labeled graph |
ctrlnum |
(DE-627)SPR013669893 (SPR)s10844-012-0213-8-e |
title_full |
NODAR: mining globally distributed substructures from a single labeled graph |
author_sort |
Hellal, Aya |
journal |
Journal of intelligent information systems |
journalStr |
Journal of intelligent information systems |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Hellal, Aya Romdhane, Lotfi Ben |
container_volume |
40 |
class |
004 ASE 54.64 bkl 06.74 bkl 54.72 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hellal, Aya |
doi_str_mv |
10.1007/s10844-012-0213-8 |
dewey-full |
004 |
author2-role |
verfasserin |
title_sort |
nodar: mining globally distributed substructures from a single labeled graph |
title_auth |
NODAR: mining globally distributed substructures from a single labeled graph |
abstract |
Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. |
abstractGer |
Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. |
abstract_unstemmed |
Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
NODAR: mining globally distributed substructures from a single labeled graph |
url |
https://dx.doi.org/10.1007/s10844-012-0213-8 |
remote_bool |
true |
author2 |
Romdhane, Lotfi Ben |
author2Str |
Romdhane, Lotfi Ben |
ppnlink |
269539131 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10844-012-0213-8 |
up_date |
2024-07-03T21:21:49.047Z |
_version_ |
1803594455114055680 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR013669893</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111003409.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10844-012-0213-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR013669893</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10844-012-0213-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.64</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">06.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hellal, Aya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">NODAR: mining globally distributed substructures from a single labeled graph</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Data mining in structured and semi-structured data focuses on frequent data values. However, in graph data mining, the focus is on common specific topologies. Graph mining, although its ubiquity, is a difficult task since it requires subgraph isomorphism which is known to be NP-complete. In order to effectively prune the search space and thereby save computational time, a graph mining algorithm requires that the support measure of a pattern to be no greater than that of its subpatterns. This property of the support measure is referred to in the literature as the down-closure, anti-monotonicity or admissibility. Unfortunately, when mining a single labeled graph, simply counting the occurrences of a graph pattern may not have the down-closure property. For this, most existing approaches mine frequent substructures in a set of labeled graphs (called also the transactional setting) and few efforts have been devoted to mining frequent globally distributed substructures in a single labeled graph. In this paper, we propose a graph mining algorithm, called NODAR(Non-Overlapping embeDding based grAph mineR), for computing common and globally distributed substructures in a single labeled graph. NODAR adopts the Depth-First Search (DFS) strategy and is based on the SMNOES (Size of Maximum Non Overlapping Embedding Set) as support measure. The core idea of NODAR is to automatically extract frequent subpatterns; and thus without frequency computation thanks to the down-closure property of SMNOES. By adopting this strategy in the computation of frequent substructures, NODAR reduces the number of subgraph isomorphism tests needed to compute pattern frequencies. Experimental results on monograph and transactional graph databases; and comparison with well-known probabilistic and exact algorithms; prove the efficacy of NODAR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Frequent subgraph mining</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Subgraph isomorphism</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DFS code</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SMNOES measure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">BFS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romdhane, Lotfi Ben</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of intelligent information systems</subfield><subfield code="d">Dordrecht : Springer Science + Business Media B.V, 1992</subfield><subfield code="g">40(2012), 1 vom: 04. Juli, Seite 1-15</subfield><subfield code="w">(DE-627)269539131</subfield><subfield code="w">(DE-600)1475525-7</subfield><subfield code="x">1573-7675</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1-15</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10844-012-0213-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.64</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">06.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">07</subfield><subfield code="h">1-15</subfield></datafield></record></collection>
|
score |
7.4012985 |