A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska
Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon,...
Ausführliche Beschreibung
Autor*in: |
Kaufman, Darrell S. [verfasserIn] Axford, Yarrow [verfasserIn] Anderson, R. Scott [verfasserIn] Lamoureux, Scott F. [verfasserIn] Schindler, Daniel E. [verfasserIn] Walker, Ian R. [verfasserIn] Werner, Al [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of paleolimnology - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988, 48(2012), 1 vom: 13. Mai, Seite 9-26 |
---|---|
Übergeordnetes Werk: |
volume:48 ; year:2012 ; number:1 ; day:13 ; month:05 ; pages:9-26 |
Links: |
---|
DOI / URN: |
10.1007/s10933-012-9607-4 |
---|
Katalog-ID: |
SPR014734583 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR014734583 | ||
003 | DE-627 | ||
005 | 20230519200228.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10933-012-9607-4 |2 doi | |
035 | |a (DE-627)SPR014734583 | ||
035 | |a (SPR)s10933-012-9607-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 560 |q ASE |
082 | 0 | 4 | |a 930 |a 570 |q ASE |
084 | |a 38.19 |2 bkl | ||
084 | |a 42.93 |2 bkl | ||
100 | 1 | |a Kaufman, Darrell S. |e verfasserin |4 aut | |
245 | 1 | 2 | |a A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. | ||
650 | 4 | |a Quaternary paleoenvironments |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lake Sediment |7 (dpeaa)DE-He213 | |
650 | 4 | |a Alaska |7 (dpeaa)DE-He213 | |
650 | 4 | |a Midges |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pollen |7 (dpeaa)DE-He213 | |
650 | 4 | |a Biogenic silica |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic susceptibility |7 (dpeaa)DE-He213 | |
650 | 4 | |a Carbon and nitrogen isotopes |7 (dpeaa)DE-He213 | |
700 | 1 | |a Axford, Yarrow |e verfasserin |4 aut | |
700 | 1 | |a Anderson, R. Scott |e verfasserin |4 aut | |
700 | 1 | |a Lamoureux, Scott F. |e verfasserin |4 aut | |
700 | 1 | |a Schindler, Daniel E. |e verfasserin |4 aut | |
700 | 1 | |a Walker, Ian R. |e verfasserin |4 aut | |
700 | 1 | |a Werner, Al |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of paleolimnology |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988 |g 48(2012), 1 vom: 13. Mai, Seite 9-26 |w (DE-627)270930205 |w (DE-600)1478181-5 |x 1573-0417 |7 nnns |
773 | 1 | 8 | |g volume:48 |g year:2012 |g number:1 |g day:13 |g month:05 |g pages:9-26 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10933-012-9607-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ANG | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.19 |q ASE |
936 | b | k | |a 42.93 |q ASE |
951 | |a AR | ||
952 | |d 48 |j 2012 |e 1 |b 13 |c 05 |h 9-26 |
author_variant |
d s k ds dsk y a ya r s a rs rsa s f l sf sfl d e s de des i r w ir irw a w aw |
---|---|
matchkey_str |
article:15730417:2012----::mlirxrcroteatlcamxmmnls150eroploniomnacagal |
hierarchy_sort_str |
2012 |
bklnumber |
38.19 42.93 |
publishDate |
2012 |
allfields |
10.1007/s10933-012-9607-4 doi (DE-627)SPR014734583 (SPR)s10933-012-9607-4-e DE-627 ger DE-627 rakwb eng 560 ASE 930 570 ASE 38.19 bkl 42.93 bkl Kaufman, Darrell S. verfasserin aut A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. Quaternary paleoenvironments (dpeaa)DE-He213 Lake Sediment (dpeaa)DE-He213 Alaska (dpeaa)DE-He213 Midges (dpeaa)DE-He213 Pollen (dpeaa)DE-He213 Biogenic silica (dpeaa)DE-He213 Magnetic susceptibility (dpeaa)DE-He213 Carbon and nitrogen isotopes (dpeaa)DE-He213 Axford, Yarrow verfasserin aut Anderson, R. Scott verfasserin aut Lamoureux, Scott F. verfasserin aut Schindler, Daniel E. verfasserin aut Walker, Ian R. verfasserin aut Werner, Al verfasserin aut Enthalten in Journal of paleolimnology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988 48(2012), 1 vom: 13. Mai, Seite 9-26 (DE-627)270930205 (DE-600)1478181-5 1573-0417 nnns volume:48 year:2012 number:1 day:13 month:05 pages:9-26 https://dx.doi.org/10.1007/s10933-012-9607-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ANG SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.19 ASE 42.93 ASE AR 48 2012 1 13 05 9-26 |
spelling |
10.1007/s10933-012-9607-4 doi (DE-627)SPR014734583 (SPR)s10933-012-9607-4-e DE-627 ger DE-627 rakwb eng 560 ASE 930 570 ASE 38.19 bkl 42.93 bkl Kaufman, Darrell S. verfasserin aut A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. Quaternary paleoenvironments (dpeaa)DE-He213 Lake Sediment (dpeaa)DE-He213 Alaska (dpeaa)DE-He213 Midges (dpeaa)DE-He213 Pollen (dpeaa)DE-He213 Biogenic silica (dpeaa)DE-He213 Magnetic susceptibility (dpeaa)DE-He213 Carbon and nitrogen isotopes (dpeaa)DE-He213 Axford, Yarrow verfasserin aut Anderson, R. Scott verfasserin aut Lamoureux, Scott F. verfasserin aut Schindler, Daniel E. verfasserin aut Walker, Ian R. verfasserin aut Werner, Al verfasserin aut Enthalten in Journal of paleolimnology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988 48(2012), 1 vom: 13. Mai, Seite 9-26 (DE-627)270930205 (DE-600)1478181-5 1573-0417 nnns volume:48 year:2012 number:1 day:13 month:05 pages:9-26 https://dx.doi.org/10.1007/s10933-012-9607-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ANG SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.19 ASE 42.93 ASE AR 48 2012 1 13 05 9-26 |
allfields_unstemmed |
10.1007/s10933-012-9607-4 doi (DE-627)SPR014734583 (SPR)s10933-012-9607-4-e DE-627 ger DE-627 rakwb eng 560 ASE 930 570 ASE 38.19 bkl 42.93 bkl Kaufman, Darrell S. verfasserin aut A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. Quaternary paleoenvironments (dpeaa)DE-He213 Lake Sediment (dpeaa)DE-He213 Alaska (dpeaa)DE-He213 Midges (dpeaa)DE-He213 Pollen (dpeaa)DE-He213 Biogenic silica (dpeaa)DE-He213 Magnetic susceptibility (dpeaa)DE-He213 Carbon and nitrogen isotopes (dpeaa)DE-He213 Axford, Yarrow verfasserin aut Anderson, R. Scott verfasserin aut Lamoureux, Scott F. verfasserin aut Schindler, Daniel E. verfasserin aut Walker, Ian R. verfasserin aut Werner, Al verfasserin aut Enthalten in Journal of paleolimnology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988 48(2012), 1 vom: 13. Mai, Seite 9-26 (DE-627)270930205 (DE-600)1478181-5 1573-0417 nnns volume:48 year:2012 number:1 day:13 month:05 pages:9-26 https://dx.doi.org/10.1007/s10933-012-9607-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ANG SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.19 ASE 42.93 ASE AR 48 2012 1 13 05 9-26 |
allfieldsGer |
10.1007/s10933-012-9607-4 doi (DE-627)SPR014734583 (SPR)s10933-012-9607-4-e DE-627 ger DE-627 rakwb eng 560 ASE 930 570 ASE 38.19 bkl 42.93 bkl Kaufman, Darrell S. verfasserin aut A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. Quaternary paleoenvironments (dpeaa)DE-He213 Lake Sediment (dpeaa)DE-He213 Alaska (dpeaa)DE-He213 Midges (dpeaa)DE-He213 Pollen (dpeaa)DE-He213 Biogenic silica (dpeaa)DE-He213 Magnetic susceptibility (dpeaa)DE-He213 Carbon and nitrogen isotopes (dpeaa)DE-He213 Axford, Yarrow verfasserin aut Anderson, R. Scott verfasserin aut Lamoureux, Scott F. verfasserin aut Schindler, Daniel E. verfasserin aut Walker, Ian R. verfasserin aut Werner, Al verfasserin aut Enthalten in Journal of paleolimnology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988 48(2012), 1 vom: 13. Mai, Seite 9-26 (DE-627)270930205 (DE-600)1478181-5 1573-0417 nnns volume:48 year:2012 number:1 day:13 month:05 pages:9-26 https://dx.doi.org/10.1007/s10933-012-9607-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ANG SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.19 ASE 42.93 ASE AR 48 2012 1 13 05 9-26 |
allfieldsSound |
10.1007/s10933-012-9607-4 doi (DE-627)SPR014734583 (SPR)s10933-012-9607-4-e DE-627 ger DE-627 rakwb eng 560 ASE 930 570 ASE 38.19 bkl 42.93 bkl Kaufman, Darrell S. verfasserin aut A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. Quaternary paleoenvironments (dpeaa)DE-He213 Lake Sediment (dpeaa)DE-He213 Alaska (dpeaa)DE-He213 Midges (dpeaa)DE-He213 Pollen (dpeaa)DE-He213 Biogenic silica (dpeaa)DE-He213 Magnetic susceptibility (dpeaa)DE-He213 Carbon and nitrogen isotopes (dpeaa)DE-He213 Axford, Yarrow verfasserin aut Anderson, R. Scott verfasserin aut Lamoureux, Scott F. verfasserin aut Schindler, Daniel E. verfasserin aut Walker, Ian R. verfasserin aut Werner, Al verfasserin aut Enthalten in Journal of paleolimnology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988 48(2012), 1 vom: 13. Mai, Seite 9-26 (DE-627)270930205 (DE-600)1478181-5 1573-0417 nnns volume:48 year:2012 number:1 day:13 month:05 pages:9-26 https://dx.doi.org/10.1007/s10933-012-9607-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ANG SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.19 ASE 42.93 ASE AR 48 2012 1 13 05 9-26 |
language |
English |
source |
Enthalten in Journal of paleolimnology 48(2012), 1 vom: 13. Mai, Seite 9-26 volume:48 year:2012 number:1 day:13 month:05 pages:9-26 |
sourceStr |
Enthalten in Journal of paleolimnology 48(2012), 1 vom: 13. Mai, Seite 9-26 volume:48 year:2012 number:1 day:13 month:05 pages:9-26 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quaternary paleoenvironments Lake Sediment Alaska Midges Pollen Biogenic silica Magnetic susceptibility Carbon and nitrogen isotopes |
dewey-raw |
560 |
isfreeaccess_bool |
false |
container_title |
Journal of paleolimnology |
authorswithroles_txt_mv |
Kaufman, Darrell S. @@aut@@ Axford, Yarrow @@aut@@ Anderson, R. Scott @@aut@@ Lamoureux, Scott F. @@aut@@ Schindler, Daniel E. @@aut@@ Walker, Ian R. @@aut@@ Werner, Al @@aut@@ |
publishDateDaySort_date |
2012-05-13T00:00:00Z |
hierarchy_top_id |
270930205 |
dewey-sort |
3560 |
id |
SPR014734583 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014734583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519200228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10933-012-9607-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014734583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10933-012-9607-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">560</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">930</subfield><subfield code="a">570</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaufman, Darrell S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternary paleoenvironments</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lake Sediment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alaska</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Midges</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pollen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biogenic silica</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic susceptibility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon and nitrogen isotopes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Axford, Yarrow</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anderson, R. Scott</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamoureux, Scott F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schindler, Daniel E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walker, Ian R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werner, Al</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of paleolimnology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988</subfield><subfield code="g">48(2012), 1 vom: 13. Mai, Seite 9-26</subfield><subfield code="w">(DE-627)270930205</subfield><subfield code="w">(DE-600)1478181-5</subfield><subfield code="x">1573-0417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:9-26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10933-012-9607-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.19</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.93</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">05</subfield><subfield code="h">9-26</subfield></datafield></record></collection>
|
author |
Kaufman, Darrell S. |
spellingShingle |
Kaufman, Darrell S. ddc 560 ddc 930 bkl 38.19 bkl 42.93 misc Quaternary paleoenvironments misc Lake Sediment misc Alaska misc Midges misc Pollen misc Biogenic silica misc Magnetic susceptibility misc Carbon and nitrogen isotopes A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska |
authorStr |
Kaufman, Darrell S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)270930205 |
format |
electronic Article |
dewey-ones |
560 - Paleontology; paleozoology 930 - History of ancient world to ca. 499 570 - Life sciences; biology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-0417 |
topic_title |
560 ASE 930 570 ASE 38.19 bkl 42.93 bkl A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska Quaternary paleoenvironments (dpeaa)DE-He213 Lake Sediment (dpeaa)DE-He213 Alaska (dpeaa)DE-He213 Midges (dpeaa)DE-He213 Pollen (dpeaa)DE-He213 Biogenic silica (dpeaa)DE-He213 Magnetic susceptibility (dpeaa)DE-He213 Carbon and nitrogen isotopes (dpeaa)DE-He213 |
topic |
ddc 560 ddc 930 bkl 38.19 bkl 42.93 misc Quaternary paleoenvironments misc Lake Sediment misc Alaska misc Midges misc Pollen misc Biogenic silica misc Magnetic susceptibility misc Carbon and nitrogen isotopes |
topic_unstemmed |
ddc 560 ddc 930 bkl 38.19 bkl 42.93 misc Quaternary paleoenvironments misc Lake Sediment misc Alaska misc Midges misc Pollen misc Biogenic silica misc Magnetic susceptibility misc Carbon and nitrogen isotopes |
topic_browse |
ddc 560 ddc 930 bkl 38.19 bkl 42.93 misc Quaternary paleoenvironments misc Lake Sediment misc Alaska misc Midges misc Pollen misc Biogenic silica misc Magnetic susceptibility misc Carbon and nitrogen isotopes |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of paleolimnology |
hierarchy_parent_id |
270930205 |
dewey-tens |
560 - Fossils & prehistoric life 930 - History of ancient world (to ca. 499) 570 - Life sciences; biology |
hierarchy_top_title |
Journal of paleolimnology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)270930205 (DE-600)1478181-5 |
title |
A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska |
ctrlnum |
(DE-627)SPR014734583 (SPR)s10933-012-9607-4-e |
title_full |
A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska |
author_sort |
Kaufman, Darrell S. |
journal |
Journal of paleolimnology |
journalStr |
Journal of paleolimnology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 900 - History & geography |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
9 |
author_browse |
Kaufman, Darrell S. Axford, Yarrow Anderson, R. Scott Lamoureux, Scott F. Schindler, Daniel E. Walker, Ian R. Werner, Al |
container_volume |
48 |
class |
560 ASE 930 570 ASE 38.19 bkl 42.93 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kaufman, Darrell S. |
doi_str_mv |
10.1007/s10933-012-9607-4 |
dewey-full |
560 930 570 |
author2-role |
verfasserin |
title_sort |
multi-proxy record of the last glacial maximum and last 14,500 years of paleoenvironmental change at lone spruce pond, southwestern alaska |
title_auth |
A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska |
abstract |
Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. |
abstractGer |
Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. |
abstract_unstemmed |
Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA SSG-OPC-GGO SSG-OPC-ANG SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_267 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska |
url |
https://dx.doi.org/10.1007/s10933-012-9607-4 |
remote_bool |
true |
author2 |
Axford, Yarrow Anderson, R. Scott Lamoureux, Scott F. Schindler, Daniel E. Walker, Ian R. Werner, Al |
author2Str |
Axford, Yarrow Anderson, R. Scott Lamoureux, Scott F. Schindler, Daniel E. Walker, Ian R. Werner, Al |
ppnlink |
270930205 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10933-012-9607-4 |
up_date |
2024-07-04T02:52:09.917Z |
_version_ |
1803615238799491072 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014734583</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519200228.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10933-012-9607-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014734583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10933-012-9607-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">560</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">930</subfield><subfield code="a">570</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.19</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.93</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kaufman, Darrell S.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A multi-proxy record of the Last Glacial Maximum and last 14,500 years of paleoenvironmental change at Lone Spruce Pond, southwestern Alaska</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Sediment cores from Lone Spruce Pond (60.007°N, 159.143°W), southwestern Alaska, record paleoenvironmental changes during the global Last Glacial Maximum (LGM), and during the last 14,500 calendar years BP (14.5 cal ka). We analyzed the abundance of organic matter, biogenic silica, carbon, and nitrogen, and the isotope ratios of C and N, magnetic susceptibility, and grain-size distribution of bulk sediment, abundance of alder shrub (Alnus) pollen, and midge (Chironomidae and Chaoboridae) assemblages in a 4.7-m-long sediment sequence from the depocenter at 22 m water depth. The basal unit contains macrofossils dating to 25–21 cal ka (the global LGM), and is interpreted as glacial-lacustrine sediment. The open water requires that the outlet of the Ahklun Mountain ice cap had retreated to within 6 km of the range crest. In addition to cladocerans and diatoms, the glacial-lacustrine mud contains chironomids consistent with deep, oligotrophic conditions; several taxa associated with relatively warm conditions are present, suggestive of relative warmth during the global LGM. The glacial-lacustrine unit is separated from the overlying non-glacial lake sediment by a possible disconformity, which might record a readvance of glacier ice. Non-glacial sediment began accumulating around 14.5 cal ka, with high flux of mineral matter and fluctuating physical and biological properties through the global deglacial period, including a reversal in biogenic-silica (BSi) content during the Younger Dryas (YD). During the global deglacial interval, the $ δ^{13} $C values of lake sediment were higher relative to other periods, consistent with low C:N ratios (8), and suggesting a dominant atmospheric $ CO_{2} $ source of C for phytoplankton. Concentrations of aquatic faunal remains (chironomids and Cladocera) were low throughout the deglacial interval, diversity was low and warm-indicator taxa were absent. Higher production and air temperatures are inferred following the YD, when bulk organic-matter (OM) content (LOI 550 °C) increased substantially and permanently, from 10 to 30 %, a trend paralleled by an increase in C and N abundance, an increase in C:N ratio (to about 12), and a decrease in $ δ^{13} $C of sediment. Post-YD warming is marked by a rapid shift in the midge assemblage. Between 8.9 and 8.5 cal ka, Alnus pollen tripled (25–75 %), followed by the near-tripling of BSi (7–19 %) by 8.2 cal ka, and $ δ^{15} $N began a steady rise, reflecting the buildup of N and an increase in denitrification in soils. Several chironomid taxa indicative of relatively warm conditions were present throughout the Holocene. Quantitative chironomid-based temperature inferences are complicated by the expansion of Alnus and resulting changes in lake nutrient status and production; these changes were associated with an abrupt increase in cladoceran abundance and persistent shift in the chironomid assemblage. During the last 2,000 years, chironomid-assemblage changes suggest cooler temperatures, and BSi and OM values were generally lower than their maximum Holocene values, with minima during the seventh and eighth centuries, and again during the eighteenth century.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quaternary paleoenvironments</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lake Sediment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Alaska</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Midges</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pollen</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biogenic silica</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic susceptibility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Carbon and nitrogen isotopes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Axford, Yarrow</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anderson, R. Scott</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lamoureux, Scott F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schindler, Daniel E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walker, Ian R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Werner, Al</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of paleolimnology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1988</subfield><subfield code="g">48(2012), 1 vom: 13. Mai, Seite 9-26</subfield><subfield code="w">(DE-627)270930205</subfield><subfield code="w">(DE-600)1478181-5</subfield><subfield code="x">1573-0417</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:48</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:9-26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10933-012-9607-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.19</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.93</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">48</subfield><subfield code="j">2012</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">05</subfield><subfield code="h">9-26</subfield></datafield></record></collection>
|
score |
7.400505 |