Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides
Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the correspondi...
Ausführliche Beschreibung
Autor*in: |
Popescu, V. A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of superconductivity - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988, 25(2011), 2 vom: 20. Okt., Seite 143-150 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2011 ; number:2 ; day:20 ; month:10 ; pages:143-150 |
Links: |
---|
DOI / URN: |
10.1007/s10948-011-1333-z |
---|
Katalog-ID: |
SPR014875160 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR014875160 | ||
003 | DE-627 | ||
005 | 20220111012842.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10948-011-1333-z |2 doi | |
035 | |a (DE-627)SPR014875160 | ||
035 | |a (SPR)s10948-011-1333-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q ASE |
084 | |a 33.74 |2 bkl | ||
100 | 1 | |a Popescu, V. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. | ||
650 | 4 | |a Optical fiber |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plasmonic optical waveguides |7 (dpeaa)DE-He213 | |
650 | 4 | |a Box-shaped optical waveguides |7 (dpeaa)DE-He213 | |
650 | 4 | |a Superconductive optical waveguides |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cuprate superconductors |7 (dpeaa)DE-He213 | |
650 | 4 | |a Finite element method |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of superconductivity |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 |g 25(2011), 2 vom: 20. Okt., Seite 143-150 |w (DE-627)313651175 |w (DE-600)2000540-4 |x 1572-9605 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2011 |g number:2 |g day:20 |g month:10 |g pages:143-150 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10948-011-1333-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 33.74 |q ASE |
951 | |a AR | ||
952 | |d 25 |j 2011 |e 2 |b 20 |c 10 |h 143-150 |
author_variant |
v a p va vap |
---|---|
matchkey_str |
article:15729605:2011----::estvtotaeigaehtdtcosnuecnutnfbrlso |
hierarchy_sort_str |
2011 |
bklnumber |
33.74 |
publishDate |
2011 |
allfields |
10.1007/s10948-011-1333-z doi (DE-627)SPR014875160 (SPR)s10948-011-1333-z-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Box-shaped optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Finite element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 2 vom: 20. Okt., Seite 143-150 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:2 day:20 month:10 pages:143-150 https://dx.doi.org/10.1007/s10948-011-1333-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 2 20 10 143-150 |
spelling |
10.1007/s10948-011-1333-z doi (DE-627)SPR014875160 (SPR)s10948-011-1333-z-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Box-shaped optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Finite element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 2 vom: 20. Okt., Seite 143-150 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:2 day:20 month:10 pages:143-150 https://dx.doi.org/10.1007/s10948-011-1333-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 2 20 10 143-150 |
allfields_unstemmed |
10.1007/s10948-011-1333-z doi (DE-627)SPR014875160 (SPR)s10948-011-1333-z-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Box-shaped optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Finite element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 2 vom: 20. Okt., Seite 143-150 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:2 day:20 month:10 pages:143-150 https://dx.doi.org/10.1007/s10948-011-1333-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 2 20 10 143-150 |
allfieldsGer |
10.1007/s10948-011-1333-z doi (DE-627)SPR014875160 (SPR)s10948-011-1333-z-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Box-shaped optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Finite element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 2 vom: 20. Okt., Seite 143-150 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:2 day:20 month:10 pages:143-150 https://dx.doi.org/10.1007/s10948-011-1333-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 2 20 10 143-150 |
allfieldsSound |
10.1007/s10948-011-1333-z doi (DE-627)SPR014875160 (SPR)s10948-011-1333-z-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Box-shaped optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Finite element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 2 vom: 20. Okt., Seite 143-150 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:2 day:20 month:10 pages:143-150 https://dx.doi.org/10.1007/s10948-011-1333-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 2 20 10 143-150 |
language |
English |
source |
Enthalten in Journal of superconductivity 25(2011), 2 vom: 20. Okt., Seite 143-150 volume:25 year:2011 number:2 day:20 month:10 pages:143-150 |
sourceStr |
Enthalten in Journal of superconductivity 25(2011), 2 vom: 20. Okt., Seite 143-150 volume:25 year:2011 number:2 day:20 month:10 pages:143-150 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optical fiber Plasmonic optical waveguides Box-shaped optical waveguides Superconductive optical waveguides Cuprate superconductors Finite element method |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of superconductivity |
authorswithroles_txt_mv |
Popescu, V. A. @@aut@@ |
publishDateDaySort_date |
2011-10-20T00:00:00Z |
hierarchy_top_id |
313651175 |
dewey-sort |
3530 |
id |
SPR014875160 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014875160</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111012842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-011-1333-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014875160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-011-1333-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popescu, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Box-shaped optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductive optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuprate superconductors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">25(2011), 2 vom: 20. Okt., Seite 143-150</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:143-150</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-011-1333-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">10</subfield><subfield code="h">143-150</subfield></datafield></record></collection>
|
author |
Popescu, V. A. |
spellingShingle |
Popescu, V. A. ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Box-shaped optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Finite element method Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides |
authorStr |
Popescu, V. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)313651175 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9605 |
topic_title |
530 ASE 33.74 bkl Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Box-shaped optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Finite element method (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Box-shaped optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Finite element method |
topic_unstemmed |
ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Box-shaped optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Finite element method |
topic_browse |
ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Box-shaped optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Finite element method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of superconductivity |
hierarchy_parent_id |
313651175 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)313651175 (DE-600)2000540-4 |
title |
Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides |
ctrlnum |
(DE-627)SPR014875160 (SPR)s10948-011-1333-z-e |
title_full |
Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides |
author_sort |
Popescu, V. A. |
journal |
Journal of superconductivity |
journalStr |
Journal of superconductivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
143 |
author_browse |
Popescu, V. A. |
container_volume |
25 |
class |
530 ASE 33.74 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Popescu, V. A. |
doi_str_mv |
10.1007/s10948-011-1333-z |
dewey-full |
530 |
title_sort |
sensitivity of traveling wave photodetectors in superconducting fiber plasmon–polariton optical waveguides |
title_auth |
Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides |
abstract |
Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. |
abstractGer |
Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. |
abstract_unstemmed |
Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
2 |
title_short |
Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides |
url |
https://dx.doi.org/10.1007/s10948-011-1333-z |
remote_bool |
true |
ppnlink |
313651175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10948-011-1333-z |
up_date |
2024-07-04T03:20:51.368Z |
_version_ |
1803617043876937728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014875160</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111012842.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-011-1333-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014875160</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-011-1333-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popescu, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sensitivity of Traveling Wave Photodetectors in Superconducting Fiber Plasmon–Polariton Optical Waveguides</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using an analytical model and a finite element method, we investigate a new, very sensitive, superconducting traveling wave photodetector made by a fiber waveguide, which includes a high index layer, a metallic layer, and an active superconducting layer. A comparison with the corresponding superconducting box shaped waveguide shows that a larger number of modes ($ HE_{11} $, $ TM_{01} $ and $ HE_{12} $) are obtained in optical fiber due to the surface plasmon–polariton modes at the interfaces between gold and air layers or between gold and YBCO layers. The radial component of the electric field is perpendicular to the metal surface and has sign changes at the gold boundaries as in the simple case of surface plasmon polaritons on metal cylinder with dielectric core. In a structure of the fiber with six layers, the imaginary parts of the $ TM_{01} $, $ HE_{12} $ modes, and the power absorption efficiency in superconducting layer are larger in comparison with that of the fiber with five layers. The confinement regimes of the light and the power absorption efficiency in superconducting layer can be optimized by only acting on the fiber geometry.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Box-shaped optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductive optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuprate superconductors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">25(2011), 2 vom: 20. Okt., Seite 143-150</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:143-150</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-011-1333-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2011</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">10</subfield><subfield code="h">143-150</subfield></datafield></record></collection>
|
score |
7.4003973 |