Modeling and Predicting the Central Magnetic Flux Density of the Superconducting Solenoid Surrounded with Iron Yoke via SVR

Abstract A novel machine learning method based on support vector regression (SVR) approach, combined with a particle swarm optimization (PSO) algorithm for its parameter optimization, was proposed to predict the magnetic field in the centre of a superconducting solenoid surrounded by a cold iron yok...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Tang, J. L. [verfasserIn]

Cai, C. Z. [verfasserIn]

Xiao, T. T. [verfasserIn]

Huang, S. J. [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2012

Schlagwörter:

Cold iron yoke

Superconducting solenoid

Magnetic flux density

Support vector regression

Particle swarm optimization

Modeling and predicting

Übergeordnetes Werk:

Enthalten in: Journal of superconductivity - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988, 25(2012), 6 vom: 25. März, Seite 1747-1751

Übergeordnetes Werk:

volume:25 ; year:2012 ; number:6 ; day:25 ; month:03 ; pages:1747-1751

Links:

Volltext

DOI / URN:

10.1007/s10948-012-1527-z

Katalog-ID:

SPR014877287

Nicht das Richtige dabei?

Schreiben Sie uns!