Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor
Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface...
Ausführliche Beschreibung
Autor*in: |
Sun, Jian [verfasserIn] Kosel, Jürgen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of superconductivity - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988, 25(2011), 8 vom: 06. Aug., Seite 2749-2752 |
---|---|
Übergeordnetes Werk: |
volume:25 ; year:2011 ; number:8 ; day:06 ; month:08 ; pages:2749-2752 |
Links: |
---|
DOI / URN: |
10.1007/s10948-011-1256-8 |
---|
Katalog-ID: |
SPR014878941 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR014878941 | ||
003 | DE-627 | ||
005 | 20220111012844.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10948-011-1256-8 |2 doi | |
035 | |a (DE-627)SPR014878941 | ||
035 | |a (SPR)s10948-011-1256-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q ASE |
084 | |a 33.74 |2 bkl | ||
100 | 1 | |a Sun, Jian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. | ||
650 | 4 | |a Extraordinary magnetoresistance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetoresistance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Magnetic sensor |7 (dpeaa)DE-He213 | |
650 | 4 | |a FEM |7 (dpeaa)DE-He213 | |
650 | 4 | |a Contact resistivity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kosel, Jürgen |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of superconductivity |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 |g 25(2011), 8 vom: 06. Aug., Seite 2749-2752 |w (DE-627)313651175 |w (DE-600)2000540-4 |x 1572-9605 |7 nnns |
773 | 1 | 8 | |g volume:25 |g year:2011 |g number:8 |g day:06 |g month:08 |g pages:2749-2752 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10948-011-1256-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 33.74 |q ASE |
951 | |a AR | ||
952 | |d 25 |j 2011 |e 8 |b 06 |c 08 |h 2749-2752 |
author_variant |
j s js j k jk |
---|---|
matchkey_str |
article:15729605:2011----::iielmnaayiotenlecocnateitvtiaetariayantrss |
hierarchy_sort_str |
2011 |
bklnumber |
33.74 |
publishDate |
2011 |
allfields |
10.1007/s10948-011-1256-8 doi (DE-627)SPR014878941 (SPR)s10948-011-1256-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Sun, Jian verfasserin aut Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. Extraordinary magnetoresistance (dpeaa)DE-He213 Magnetoresistance (dpeaa)DE-He213 Magnetic sensor (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Contact resistivity (dpeaa)DE-He213 Kosel, Jürgen verfasserin aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 8 vom: 06. Aug., Seite 2749-2752 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 https://dx.doi.org/10.1007/s10948-011-1256-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 8 06 08 2749-2752 |
spelling |
10.1007/s10948-011-1256-8 doi (DE-627)SPR014878941 (SPR)s10948-011-1256-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Sun, Jian verfasserin aut Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. Extraordinary magnetoresistance (dpeaa)DE-He213 Magnetoresistance (dpeaa)DE-He213 Magnetic sensor (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Contact resistivity (dpeaa)DE-He213 Kosel, Jürgen verfasserin aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 8 vom: 06. Aug., Seite 2749-2752 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 https://dx.doi.org/10.1007/s10948-011-1256-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 8 06 08 2749-2752 |
allfields_unstemmed |
10.1007/s10948-011-1256-8 doi (DE-627)SPR014878941 (SPR)s10948-011-1256-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Sun, Jian verfasserin aut Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. Extraordinary magnetoresistance (dpeaa)DE-He213 Magnetoresistance (dpeaa)DE-He213 Magnetic sensor (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Contact resistivity (dpeaa)DE-He213 Kosel, Jürgen verfasserin aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 8 vom: 06. Aug., Seite 2749-2752 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 https://dx.doi.org/10.1007/s10948-011-1256-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 8 06 08 2749-2752 |
allfieldsGer |
10.1007/s10948-011-1256-8 doi (DE-627)SPR014878941 (SPR)s10948-011-1256-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Sun, Jian verfasserin aut Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. Extraordinary magnetoresistance (dpeaa)DE-He213 Magnetoresistance (dpeaa)DE-He213 Magnetic sensor (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Contact resistivity (dpeaa)DE-He213 Kosel, Jürgen verfasserin aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 8 vom: 06. Aug., Seite 2749-2752 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 https://dx.doi.org/10.1007/s10948-011-1256-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 8 06 08 2749-2752 |
allfieldsSound |
10.1007/s10948-011-1256-8 doi (DE-627)SPR014878941 (SPR)s10948-011-1256-8-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Sun, Jian verfasserin aut Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. Extraordinary magnetoresistance (dpeaa)DE-He213 Magnetoresistance (dpeaa)DE-He213 Magnetic sensor (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Contact resistivity (dpeaa)DE-He213 Kosel, Jürgen verfasserin aut Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 25(2011), 8 vom: 06. Aug., Seite 2749-2752 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 https://dx.doi.org/10.1007/s10948-011-1256-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 25 2011 8 06 08 2749-2752 |
language |
English |
source |
Enthalten in Journal of superconductivity 25(2011), 8 vom: 06. Aug., Seite 2749-2752 volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 |
sourceStr |
Enthalten in Journal of superconductivity 25(2011), 8 vom: 06. Aug., Seite 2749-2752 volume:25 year:2011 number:8 day:06 month:08 pages:2749-2752 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Extraordinary magnetoresistance Magnetoresistance Magnetic sensor FEM Contact resistivity |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of superconductivity |
authorswithroles_txt_mv |
Sun, Jian @@aut@@ Kosel, Jürgen @@aut@@ |
publishDateDaySort_date |
2011-08-06T00:00:00Z |
hierarchy_top_id |
313651175 |
dewey-sort |
3530 |
id |
SPR014878941 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014878941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111012844.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-011-1256-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014878941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-011-1256-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extraordinary magnetoresistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetoresistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic sensor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contact resistivity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kosel, Jürgen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">25(2011), 8 vom: 06. Aug., Seite 2749-2752</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:8</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2749-2752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-011-1256-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2011</subfield><subfield code="e">8</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">2749-2752</subfield></datafield></record></collection>
|
author |
Sun, Jian |
spellingShingle |
Sun, Jian ddc 530 bkl 33.74 misc Extraordinary magnetoresistance misc Magnetoresistance misc Magnetic sensor misc FEM misc Contact resistivity Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor |
authorStr |
Sun, Jian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)313651175 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9605 |
topic_title |
530 ASE 33.74 bkl Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor Extraordinary magnetoresistance (dpeaa)DE-He213 Magnetoresistance (dpeaa)DE-He213 Magnetic sensor (dpeaa)DE-He213 FEM (dpeaa)DE-He213 Contact resistivity (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.74 misc Extraordinary magnetoresistance misc Magnetoresistance misc Magnetic sensor misc FEM misc Contact resistivity |
topic_unstemmed |
ddc 530 bkl 33.74 misc Extraordinary magnetoresistance misc Magnetoresistance misc Magnetic sensor misc FEM misc Contact resistivity |
topic_browse |
ddc 530 bkl 33.74 misc Extraordinary magnetoresistance misc Magnetoresistance misc Magnetic sensor misc FEM misc Contact resistivity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of superconductivity |
hierarchy_parent_id |
313651175 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)313651175 (DE-600)2000540-4 |
title |
Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor |
ctrlnum |
(DE-627)SPR014878941 (SPR)s10948-011-1256-8-e |
title_full |
Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor |
author_sort |
Sun, Jian |
journal |
Journal of superconductivity |
journalStr |
Journal of superconductivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
2749 |
author_browse |
Sun, Jian Kosel, Jürgen |
container_volume |
25 |
class |
530 ASE 33.74 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Jian |
doi_str_mv |
10.1007/s10948-011-1256-8 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
finite element analysis on the influence of contact resistivity in an extraordinary magnetoresistance magnetic field micro sensor |
title_auth |
Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor |
abstract |
Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. |
abstractGer |
Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. |
abstract_unstemmed |
Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
8 |
title_short |
Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor |
url |
https://dx.doi.org/10.1007/s10948-011-1256-8 |
remote_bool |
true |
author2 |
Kosel, Jürgen |
author2Str |
Kosel, Jürgen |
ppnlink |
313651175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10948-011-1256-8 |
up_date |
2024-07-04T03:21:27.308Z |
_version_ |
1803617081556467712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014878941</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111012844.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-011-1256-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014878941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-011-1256-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Jian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Finite Element Analysis on the Influence of Contact Resistivity in an Extraordinary Magnetoresistance Magnetic Field Micro Sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89×$ 10^{4} $% and 0.02%/($ 10^{−4} $ T), respectively, at 1 Tesla. For values of contact resistivity up to $ 10^{−8} $ Ω $ cm^{2} $ the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5×$ 10^{−6} $ Ω $ cm^{2} $ of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Extraordinary magnetoresistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetoresistance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic sensor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contact resistivity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kosel, Jürgen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">25(2011), 8 vom: 06. Aug., Seite 2749-2752</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:25</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:8</subfield><subfield code="g">day:06</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:2749-2752</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-011-1256-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">25</subfield><subfield code="j">2011</subfield><subfield code="e">8</subfield><subfield code="b">06</subfield><subfield code="c">08</subfield><subfield code="h">2749-2752</subfield></datafield></record></collection>
|
score |
7.400941 |