Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers
Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide...
Ausführliche Beschreibung
Autor*in: |
Popescu, V. A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of superconductivity - Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988, 26(2013), 8 vom: 19. Mai, Seite 2563-2571 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2013 ; number:8 ; day:19 ; month:05 ; pages:2563-2571 |
Links: |
---|
DOI / URN: |
10.1007/s10948-013-2250-0 |
---|
Katalog-ID: |
SPR014885328 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR014885328 | ||
003 | DE-627 | ||
005 | 20220111012859.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10948-013-2250-0 |2 doi | |
035 | |a (DE-627)SPR014885328 | ||
035 | |a (SPR)s10948-013-2250-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q ASE |
084 | |a 33.74 |2 bkl | ||
100 | 1 | |a Popescu, V. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. | ||
650 | 4 | |a Optical fiber |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plasmonic optical waveguides |7 (dpeaa)DE-He213 | |
650 | 4 | |a Superconductive optical waveguides |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cuprate superconductors |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metamaterials |7 (dpeaa)DE-He213 | |
650 | 4 | |a Finite-element method |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of superconductivity |d Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 |g 26(2013), 8 vom: 19. Mai, Seite 2563-2571 |w (DE-627)313651175 |w (DE-600)2000540-4 |x 1572-9605 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2013 |g number:8 |g day:19 |g month:05 |g pages:2563-2571 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10948-013-2250-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 33.74 |q ASE |
951 | |a AR | ||
952 | |d 26 |j 2013 |e 8 |b 19 |c 05 |h 2563-2571 |
author_variant |
v a p va vap |
---|---|
matchkey_str |
article:15729605:2013----::fiinsbaeeghlsoisprodcightdtcosnlrtipaaw |
hierarchy_sort_str |
2013 |
bklnumber |
33.74 |
publishDate |
2013 |
allfields |
10.1007/s10948-013-2250-0 doi (DE-627)SPR014885328 (SPR)s10948-013-2250-0-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Metamaterials (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 26(2013), 8 vom: 19. Mai, Seite 2563-2571 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 https://dx.doi.org/10.1007/s10948-013-2250-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 26 2013 8 19 05 2563-2571 |
spelling |
10.1007/s10948-013-2250-0 doi (DE-627)SPR014885328 (SPR)s10948-013-2250-0-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Metamaterials (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 26(2013), 8 vom: 19. Mai, Seite 2563-2571 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 https://dx.doi.org/10.1007/s10948-013-2250-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 26 2013 8 19 05 2563-2571 |
allfields_unstemmed |
10.1007/s10948-013-2250-0 doi (DE-627)SPR014885328 (SPR)s10948-013-2250-0-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Metamaterials (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 26(2013), 8 vom: 19. Mai, Seite 2563-2571 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 https://dx.doi.org/10.1007/s10948-013-2250-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 26 2013 8 19 05 2563-2571 |
allfieldsGer |
10.1007/s10948-013-2250-0 doi (DE-627)SPR014885328 (SPR)s10948-013-2250-0-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Metamaterials (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 26(2013), 8 vom: 19. Mai, Seite 2563-2571 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 https://dx.doi.org/10.1007/s10948-013-2250-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 26 2013 8 19 05 2563-2571 |
allfieldsSound |
10.1007/s10948-013-2250-0 doi (DE-627)SPR014885328 (SPR)s10948-013-2250-0-e DE-627 ger DE-627 rakwb eng 530 ASE 33.74 bkl Popescu, V. A. verfasserin aut Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Metamaterials (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 Enthalten in Journal of superconductivity Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988 26(2013), 8 vom: 19. Mai, Seite 2563-2571 (DE-627)313651175 (DE-600)2000540-4 1572-9605 nnns volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 https://dx.doi.org/10.1007/s10948-013-2250-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.74 ASE AR 26 2013 8 19 05 2563-2571 |
language |
English |
source |
Enthalten in Journal of superconductivity 26(2013), 8 vom: 19. Mai, Seite 2563-2571 volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 |
sourceStr |
Enthalten in Journal of superconductivity 26(2013), 8 vom: 19. Mai, Seite 2563-2571 volume:26 year:2013 number:8 day:19 month:05 pages:2563-2571 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Optical fiber Plasmonic optical waveguides Superconductive optical waveguides Cuprate superconductors Metamaterials Finite-element method |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Journal of superconductivity |
authorswithroles_txt_mv |
Popescu, V. A. @@aut@@ |
publishDateDaySort_date |
2013-05-19T00:00:00Z |
hierarchy_top_id |
313651175 |
dewey-sort |
3530 |
id |
SPR014885328 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014885328</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111012859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-013-2250-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014885328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-013-2250-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popescu, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductive optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuprate superconductors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamaterials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">26(2013), 8 vom: 19. Mai, Seite 2563-2571</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:8</subfield><subfield code="g">day:19</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2563-2571</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-013-2250-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2013</subfield><subfield code="e">8</subfield><subfield code="b">19</subfield><subfield code="c">05</subfield><subfield code="h">2563-2571</subfield></datafield></record></collection>
|
author |
Popescu, V. A. |
spellingShingle |
Popescu, V. A. ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Metamaterials misc Finite-element method Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers |
authorStr |
Popescu, V. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)313651175 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1572-9605 |
topic_title |
530 ASE 33.74 bkl Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers Optical fiber (dpeaa)DE-He213 Plasmonic optical waveguides (dpeaa)DE-He213 Superconductive optical waveguides (dpeaa)DE-He213 Cuprate superconductors (dpeaa)DE-He213 Metamaterials (dpeaa)DE-He213 Finite-element method (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Metamaterials misc Finite-element method |
topic_unstemmed |
ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Metamaterials misc Finite-element method |
topic_browse |
ddc 530 bkl 33.74 misc Optical fiber misc Plasmonic optical waveguides misc Superconductive optical waveguides misc Cuprate superconductors misc Metamaterials misc Finite-element method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of superconductivity |
hierarchy_parent_id |
313651175 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Journal of superconductivity |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)313651175 (DE-600)2000540-4 |
title |
Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers |
ctrlnum |
(DE-627)SPR014885328 (SPR)s10948-013-2250-0-e |
title_full |
Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers |
author_sort |
Popescu, V. A. |
journal |
Journal of superconductivity |
journalStr |
Journal of superconductivity |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
2563 |
author_browse |
Popescu, V. A. |
container_volume |
26 |
class |
530 ASE 33.74 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Popescu, V. A. |
doi_str_mv |
10.1007/s10948-013-2250-0 |
dewey-full |
530 |
title_sort |
efficient sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides and in optical fibers |
title_auth |
Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers |
abstract |
Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. |
abstractGer |
Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. |
abstract_unstemmed |
Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
8 |
title_short |
Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers |
url |
https://dx.doi.org/10.1007/s10948-013-2250-0 |
remote_bool |
true |
ppnlink |
313651175 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10948-013-2250-0 |
up_date |
2024-07-04T03:22:31.200Z |
_version_ |
1803617148548939776 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014885328</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111012859.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10948-013-2250-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014885328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10948-013-2250-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.74</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Popescu, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient Sub-wavelength Plasmonic Superconducting Photodetectors in Ultra-Thin Planar Waveguides and in Optical Fibers</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using a finite-element method we investigate the efficiency of sub-wavelength plasmonic superconducting photodetectors in ultra-thin planar waveguides (the incident wave is P-polarized) and in optical fibers (a traveling wave). The unit cell of a periodic sub-wavelength planar waveguide is made by a gold strip that is encapsulated in an YBCO layer and further enclosed above by an air layer and beyond by a thick gold plate substrate. For a planar structure with a single unit cell, the power absorption in YBCO layer is very large (between 0.929 and 0.975) for a fixed wavelength λ=1.55 μm when the distance between the strips and gold substrate is varied between 17 nm and 32 nm. When the wavelength is varied between 1.1 μm and 1.9 μm, the power absorption in YBCO layer is between 0.944 and 0.965 with a maximum of 0.976 at λ=1.40 μm. The superconducting traveling wave photodetector is made by an optical fiber, which includes a gold core surrounded by a number of smaller gold cylinders at a small distance from the central gold region and that are encapsulated in an active YBCO layer and further enclosed by an air layer. In our structure of the fiber with 18 smaller gold cylinders, the imaginary parts of the effective index of plasmon modes (two nondegenerate modes and eight twofold degenerate modes) and the power absorption (between 0.904 and 0.976) in active YBCO layer are very large. The first nine modes are highly confined in the YBCO layer in the space between the neighboring gold cylinders and the other nine modes are highly confined in the YBCO layer but in the space between the small gold cylinders and the gold core. Although in our structure, the thickness of the YBCO layer is 10 times smaller in comparison with that of a recently published model with 32 small gold cylinders, the losses in active YBCO layer are also very large.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optical fiber</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasmonic optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductive optical waveguides</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cuprate superconductors</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamaterials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Finite-element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of superconductivity</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V., 1988</subfield><subfield code="g">26(2013), 8 vom: 19. Mai, Seite 2563-2571</subfield><subfield code="w">(DE-627)313651175</subfield><subfield code="w">(DE-600)2000540-4</subfield><subfield code="x">1572-9605</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:8</subfield><subfield code="g">day:19</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2563-2571</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10948-013-2250-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.74</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2013</subfield><subfield code="e">8</subfield><subfield code="b">19</subfield><subfield code="c">05</subfield><subfield code="h">2563-2571</subfield></datafield></record></collection>
|
score |
7.4010477 |