Broadband strong motion simulation in layered half-space using stochastic Green’s function technique
Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spa...
Ausführliche Beschreibung
Autor*in: |
Hisada, Y. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2008 |
---|
Schlagwörter: |
Broadband strong motion simulation Green’s function of layered half-spaces Stochastic Green’s function method |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of seismology - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997, 12(2008), 2 vom: 05. März, Seite 265-279 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2008 ; number:2 ; day:05 ; month:03 ; pages:265-279 |
Links: |
---|
DOI / URN: |
10.1007/s10950-008-9090-6 |
---|
Katalog-ID: |
SPR014920239 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR014920239 | ||
003 | DE-627 | ||
005 | 20220111013026.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2008 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s10950-008-9090-6 |2 doi | |
035 | |a (DE-627)SPR014920239 | ||
035 | |a (SPR)s10950-008-9090-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q ASE |
084 | |a 38.38 |2 bkl | ||
100 | 1 | |a Hisada, Y. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Broadband strong motion simulation in layered half-space using stochastic Green’s function technique |
264 | 1 | |c 2008 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. | ||
650 | 4 | |a Broadband strong motion simulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Omega-squared model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Green’s function of layered half-spaces |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stochastic Green’s function method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Empirical Green’s function method |7 (dpeaa)DE-He213 | |
650 | 4 | |a The scaling law |7 (dpeaa)DE-He213 | |
650 | 4 | |a 1994 Northridge earthquake |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Journal of seismology |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 |g 12(2008), 2 vom: 05. März, Seite 265-279 |w (DE-627)271177985 |w (DE-600)1479210-2 |x 1573-157X |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2008 |g number:2 |g day:05 |g month:03 |g pages:265-279 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s10950-008-9090-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 38.38 |q ASE |
951 | |a AR | ||
952 | |d 12 |j 2008 |e 2 |b 05 |c 03 |h 265-279 |
author_variant |
y h yh |
---|---|
matchkey_str |
article:1573157X:2008----::rabnsrnmtosmltoilyrdafpcuigtcat |
hierarchy_sort_str |
2008 |
bklnumber |
38.38 |
publishDate |
2008 |
allfields |
10.1007/s10950-008-9090-6 doi (DE-627)SPR014920239 (SPR)s10950-008-9090-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.38 bkl Hisada, Y. verfasserin aut Broadband strong motion simulation in layered half-space using stochastic Green’s function technique 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. Broadband strong motion simulation (dpeaa)DE-He213 Omega-squared model (dpeaa)DE-He213 Green’s function of layered half-spaces (dpeaa)DE-He213 Stochastic Green’s function method (dpeaa)DE-He213 Empirical Green’s function method (dpeaa)DE-He213 The scaling law (dpeaa)DE-He213 1994 Northridge earthquake (dpeaa)DE-He213 Enthalten in Journal of seismology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 12(2008), 2 vom: 05. März, Seite 265-279 (DE-627)271177985 (DE-600)1479210-2 1573-157X nnns volume:12 year:2008 number:2 day:05 month:03 pages:265-279 https://dx.doi.org/10.1007/s10950-008-9090-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.38 ASE AR 12 2008 2 05 03 265-279 |
spelling |
10.1007/s10950-008-9090-6 doi (DE-627)SPR014920239 (SPR)s10950-008-9090-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.38 bkl Hisada, Y. verfasserin aut Broadband strong motion simulation in layered half-space using stochastic Green’s function technique 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. Broadband strong motion simulation (dpeaa)DE-He213 Omega-squared model (dpeaa)DE-He213 Green’s function of layered half-spaces (dpeaa)DE-He213 Stochastic Green’s function method (dpeaa)DE-He213 Empirical Green’s function method (dpeaa)DE-He213 The scaling law (dpeaa)DE-He213 1994 Northridge earthquake (dpeaa)DE-He213 Enthalten in Journal of seismology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 12(2008), 2 vom: 05. März, Seite 265-279 (DE-627)271177985 (DE-600)1479210-2 1573-157X nnns volume:12 year:2008 number:2 day:05 month:03 pages:265-279 https://dx.doi.org/10.1007/s10950-008-9090-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.38 ASE AR 12 2008 2 05 03 265-279 |
allfields_unstemmed |
10.1007/s10950-008-9090-6 doi (DE-627)SPR014920239 (SPR)s10950-008-9090-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.38 bkl Hisada, Y. verfasserin aut Broadband strong motion simulation in layered half-space using stochastic Green’s function technique 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. Broadband strong motion simulation (dpeaa)DE-He213 Omega-squared model (dpeaa)DE-He213 Green’s function of layered half-spaces (dpeaa)DE-He213 Stochastic Green’s function method (dpeaa)DE-He213 Empirical Green’s function method (dpeaa)DE-He213 The scaling law (dpeaa)DE-He213 1994 Northridge earthquake (dpeaa)DE-He213 Enthalten in Journal of seismology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 12(2008), 2 vom: 05. März, Seite 265-279 (DE-627)271177985 (DE-600)1479210-2 1573-157X nnns volume:12 year:2008 number:2 day:05 month:03 pages:265-279 https://dx.doi.org/10.1007/s10950-008-9090-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.38 ASE AR 12 2008 2 05 03 265-279 |
allfieldsGer |
10.1007/s10950-008-9090-6 doi (DE-627)SPR014920239 (SPR)s10950-008-9090-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.38 bkl Hisada, Y. verfasserin aut Broadband strong motion simulation in layered half-space using stochastic Green’s function technique 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. Broadband strong motion simulation (dpeaa)DE-He213 Omega-squared model (dpeaa)DE-He213 Green’s function of layered half-spaces (dpeaa)DE-He213 Stochastic Green’s function method (dpeaa)DE-He213 Empirical Green’s function method (dpeaa)DE-He213 The scaling law (dpeaa)DE-He213 1994 Northridge earthquake (dpeaa)DE-He213 Enthalten in Journal of seismology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 12(2008), 2 vom: 05. März, Seite 265-279 (DE-627)271177985 (DE-600)1479210-2 1573-157X nnns volume:12 year:2008 number:2 day:05 month:03 pages:265-279 https://dx.doi.org/10.1007/s10950-008-9090-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.38 ASE AR 12 2008 2 05 03 265-279 |
allfieldsSound |
10.1007/s10950-008-9090-6 doi (DE-627)SPR014920239 (SPR)s10950-008-9090-6-e DE-627 ger DE-627 rakwb eng 550 ASE 38.38 bkl Hisada, Y. verfasserin aut Broadband strong motion simulation in layered half-space using stochastic Green’s function technique 2008 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. Broadband strong motion simulation (dpeaa)DE-He213 Omega-squared model (dpeaa)DE-He213 Green’s function of layered half-spaces (dpeaa)DE-He213 Stochastic Green’s function method (dpeaa)DE-He213 Empirical Green’s function method (dpeaa)DE-He213 The scaling law (dpeaa)DE-He213 1994 Northridge earthquake (dpeaa)DE-He213 Enthalten in Journal of seismology Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997 12(2008), 2 vom: 05. März, Seite 265-279 (DE-627)271177985 (DE-600)1479210-2 1573-157X nnns volume:12 year:2008 number:2 day:05 month:03 pages:265-279 https://dx.doi.org/10.1007/s10950-008-9090-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 38.38 ASE AR 12 2008 2 05 03 265-279 |
language |
English |
source |
Enthalten in Journal of seismology 12(2008), 2 vom: 05. März, Seite 265-279 volume:12 year:2008 number:2 day:05 month:03 pages:265-279 |
sourceStr |
Enthalten in Journal of seismology 12(2008), 2 vom: 05. März, Seite 265-279 volume:12 year:2008 number:2 day:05 month:03 pages:265-279 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Broadband strong motion simulation Omega-squared model Green’s function of layered half-spaces Stochastic Green’s function method Empirical Green’s function method The scaling law 1994 Northridge earthquake |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Journal of seismology |
authorswithroles_txt_mv |
Hisada, Y. @@aut@@ |
publishDateDaySort_date |
2008-03-05T00:00:00Z |
hierarchy_top_id |
271177985 |
dewey-sort |
3550 |
id |
SPR014920239 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014920239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111013026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10950-008-9090-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014920239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10950-008-9090-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hisada, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Broadband strong motion simulation in layered half-space using stochastic Green’s function technique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband strong motion simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Omega-squared model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green’s function of layered half-spaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Green’s function method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Empirical Green’s function method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The scaling law</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1994 Northridge earthquake</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of seismology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997</subfield><subfield code="g">12(2008), 2 vom: 05. März, Seite 265-279</subfield><subfield code="w">(DE-627)271177985</subfield><subfield code="w">(DE-600)1479210-2</subfield><subfield code="x">1573-157X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:265-279</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10950-008-9090-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2008</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">03</subfield><subfield code="h">265-279</subfield></datafield></record></collection>
|
author |
Hisada, Y. |
spellingShingle |
Hisada, Y. ddc 550 bkl 38.38 misc Broadband strong motion simulation misc Omega-squared model misc Green’s function of layered half-spaces misc Stochastic Green’s function method misc Empirical Green’s function method misc The scaling law misc 1994 Northridge earthquake Broadband strong motion simulation in layered half-space using stochastic Green’s function technique |
authorStr |
Hisada, Y. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)271177985 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-157X |
topic_title |
550 ASE 38.38 bkl Broadband strong motion simulation in layered half-space using stochastic Green’s function technique Broadband strong motion simulation (dpeaa)DE-He213 Omega-squared model (dpeaa)DE-He213 Green’s function of layered half-spaces (dpeaa)DE-He213 Stochastic Green’s function method (dpeaa)DE-He213 Empirical Green’s function method (dpeaa)DE-He213 The scaling law (dpeaa)DE-He213 1994 Northridge earthquake (dpeaa)DE-He213 |
topic |
ddc 550 bkl 38.38 misc Broadband strong motion simulation misc Omega-squared model misc Green’s function of layered half-spaces misc Stochastic Green’s function method misc Empirical Green’s function method misc The scaling law misc 1994 Northridge earthquake |
topic_unstemmed |
ddc 550 bkl 38.38 misc Broadband strong motion simulation misc Omega-squared model misc Green’s function of layered half-spaces misc Stochastic Green’s function method misc Empirical Green’s function method misc The scaling law misc 1994 Northridge earthquake |
topic_browse |
ddc 550 bkl 38.38 misc Broadband strong motion simulation misc Omega-squared model misc Green’s function of layered half-spaces misc Stochastic Green’s function method misc Empirical Green’s function method misc The scaling law misc 1994 Northridge earthquake |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of seismology |
hierarchy_parent_id |
271177985 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Journal of seismology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)271177985 (DE-600)1479210-2 |
title |
Broadband strong motion simulation in layered half-space using stochastic Green’s function technique |
ctrlnum |
(DE-627)SPR014920239 (SPR)s10950-008-9090-6-e |
title_full |
Broadband strong motion simulation in layered half-space using stochastic Green’s function technique |
author_sort |
Hisada, Y. |
journal |
Journal of seismology |
journalStr |
Journal of seismology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2008 |
contenttype_str_mv |
txt |
container_start_page |
265 |
author_browse |
Hisada, Y. |
container_volume |
12 |
class |
550 ASE 38.38 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Hisada, Y. |
doi_str_mv |
10.1007/s10950-008-9090-6 |
dewey-full |
550 |
title_sort |
broadband strong motion simulation in layered half-space using stochastic green’s function technique |
title_auth |
Broadband strong motion simulation in layered half-space using stochastic Green’s function technique |
abstract |
Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. |
abstractGer |
Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. |
abstract_unstemmed |
Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-GEO SSG-OPC-ASE GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Broadband strong motion simulation in layered half-space using stochastic Green’s function technique |
url |
https://dx.doi.org/10.1007/s10950-008-9090-6 |
remote_bool |
true |
ppnlink |
271177985 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10950-008-9090-6 |
up_date |
2024-07-04T03:28:31.698Z |
_version_ |
1803617526553247744 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR014920239</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111013026.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2008 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10950-008-9090-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR014920239</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s10950-008-9090-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.38</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hisada, Y.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Broadband strong motion simulation in layered half-space using stochastic Green’s function technique</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2008</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The stochastic Green’s function method, which simulates one component of the far-field S-waves from an extended fault plane at high frequencies (Kamae et al., J Struct Constr Eng Trans AIJ, 430:1–9, 1991), is extended to simulate the three components of the full waveform in layered half-spaces for broadband frequency range. The method firstly computes ground motions from small earthquakes, which correspond to the ruptures of sub-faults on a fault plane of a large earthquake, and secondly constructs the strong motions of the large earthquake by superposing the small ground motions using the empirical Green’s function technique (e.g., Irikura, Proc 7th Japan Earthq Eng Symp, 151–156, 1986). The broadband stochastic omega-square model is proposed as the moment rate functions of the small earthquakes, in which random and zero phases are used at higher and lower frequencies, respectively. The zero phases are introduced to simulate a smooth ramp function of the moment function with the duration of 1/fc s (fc: the corner frequency) and to reproduce coherent strong motions at low frequencies (i.e., the directivity pulse). As for the radiation coefficients, the theoretical values of double couple sources for lower frequencies and the theoretical isotropic values for the P-, SV-, and SH-waves (Onishi and Horike, J Struct Constr Eng Trans AIJ, 586:37–44, 2004) for high frequencies are used. The proposed method uses the theoretical Green’s functions of layered half-spaces instead of the far-field S-waves, which reproduce the complete waves including the direct and reflected P- and S-waves and surface waves at broadband frequencies. Finally, the proposed method is applied to the 1994 Northridge earthquake, and results show excellent agreement with the observation records at broadband frequencies. At the same time, the method still needs improvements especially because it underestimates the high-frequency vertical components in the near fault range. Nonetheless, the method will be useful for modeling high frequency contributions in the hybrid methods, which use stochastic and deterministic methods for high and low frequencies, respectively (e.g., the stochastic Green’s function method + finite difference methods; Kamae et al., Bull Seism Soc Am, 88:357–367, 1998; Pitarka et al., Bull Seism Soc Am 90:566–586, 2000), because it reproduces the full waveforms in layered media including not only random characteristics at higher frequencies but also theoretical and deterministic coherencies at lower frequencies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Broadband strong motion simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Omega-squared model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Green’s function of layered half-spaces</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic Green’s function method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Empirical Green’s function method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">The scaling law</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">1994 Northridge earthquake</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of seismology</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1997</subfield><subfield code="g">12(2008), 2 vom: 05. März, Seite 265-279</subfield><subfield code="w">(DE-627)271177985</subfield><subfield code="w">(DE-600)1479210-2</subfield><subfield code="x">1573-157X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2008</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:265-279</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s10950-008-9090-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.38</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2008</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">03</subfield><subfield code="h">265-279</subfield></datafield></record></collection>
|
score |
7.4019356 |