Behavior of a barrier layer of corrosion films on zirconium alloys
Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measur...
Ausführliche Beschreibung
Autor*in: |
Nikitin, K. N. [verfasserIn] Shishov, V. N. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Protection of metals - Moscow : MAIK Nauka/Interperiodica Publ., 2000, 46(2010), 2 vom: März, Seite 261-266 |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2010 ; number:2 ; month:03 ; pages:261-266 |
Links: |
---|
DOI / URN: |
10.1134/S2070205110020140 |
---|
Katalog-ID: |
SPR016844815 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR016844815 | ||
003 | DE-627 | ||
005 | 20220111041852.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S2070205110020140 |2 doi | |
035 | |a (DE-627)SPR016844815 | ||
035 | |a (SPR)S2070205110020140-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q ASE |
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Nikitin, K. N. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Behavior of a barrier layer of corrosion films on zirconium alloys |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. | ||
650 | 4 | |a Oxide Film |7 (dpeaa)DE-He213 | |
650 | 4 | |a Barrier Potential |7 (dpeaa)DE-He213 | |
650 | 4 | |a Barrier Layer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Zirconium Alloy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrophysical Property |7 (dpeaa)DE-He213 | |
700 | 1 | |a Shishov, V. N. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Protection of metals |d Moscow : MAIK Nauka/Interperiodica Publ., 2000 |g 46(2010), 2 vom: März, Seite 261-266 |w (DE-627)334712300 |w (DE-600)2058128-2 |x 1608-327X |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2010 |g number:2 |g month:03 |g pages:261-266 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S2070205110020140 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 52.78 |q ASE |
951 | |a AR | ||
952 | |d 46 |j 2010 |e 2 |c 03 |h 261-266 |
author_variant |
k n n kn knn v n s vn vns |
---|---|
matchkey_str |
article:1608327X:2010----::eairfbriraeocroinimoz |
hierarchy_sort_str |
2010 |
bklnumber |
52.78 |
publishDate |
2010 |
allfields |
10.1134/S2070205110020140 doi (DE-627)SPR016844815 (SPR)S2070205110020140-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Nikitin, K. N. verfasserin aut Behavior of a barrier layer of corrosion films on zirconium alloys 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. Oxide Film (dpeaa)DE-He213 Barrier Potential (dpeaa)DE-He213 Barrier Layer (dpeaa)DE-He213 Zirconium Alloy (dpeaa)DE-He213 Electrophysical Property (dpeaa)DE-He213 Shishov, V. N. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 46(2010), 2 vom: März, Seite 261-266 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:46 year:2010 number:2 month:03 pages:261-266 https://dx.doi.org/10.1134/S2070205110020140 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 46 2010 2 03 261-266 |
spelling |
10.1134/S2070205110020140 doi (DE-627)SPR016844815 (SPR)S2070205110020140-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Nikitin, K. N. verfasserin aut Behavior of a barrier layer of corrosion films on zirconium alloys 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. Oxide Film (dpeaa)DE-He213 Barrier Potential (dpeaa)DE-He213 Barrier Layer (dpeaa)DE-He213 Zirconium Alloy (dpeaa)DE-He213 Electrophysical Property (dpeaa)DE-He213 Shishov, V. N. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 46(2010), 2 vom: März, Seite 261-266 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:46 year:2010 number:2 month:03 pages:261-266 https://dx.doi.org/10.1134/S2070205110020140 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 46 2010 2 03 261-266 |
allfields_unstemmed |
10.1134/S2070205110020140 doi (DE-627)SPR016844815 (SPR)S2070205110020140-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Nikitin, K. N. verfasserin aut Behavior of a barrier layer of corrosion films on zirconium alloys 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. Oxide Film (dpeaa)DE-He213 Barrier Potential (dpeaa)DE-He213 Barrier Layer (dpeaa)DE-He213 Zirconium Alloy (dpeaa)DE-He213 Electrophysical Property (dpeaa)DE-He213 Shishov, V. N. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 46(2010), 2 vom: März, Seite 261-266 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:46 year:2010 number:2 month:03 pages:261-266 https://dx.doi.org/10.1134/S2070205110020140 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 46 2010 2 03 261-266 |
allfieldsGer |
10.1134/S2070205110020140 doi (DE-627)SPR016844815 (SPR)S2070205110020140-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Nikitin, K. N. verfasserin aut Behavior of a barrier layer of corrosion films on zirconium alloys 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. Oxide Film (dpeaa)DE-He213 Barrier Potential (dpeaa)DE-He213 Barrier Layer (dpeaa)DE-He213 Zirconium Alloy (dpeaa)DE-He213 Electrophysical Property (dpeaa)DE-He213 Shishov, V. N. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 46(2010), 2 vom: März, Seite 261-266 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:46 year:2010 number:2 month:03 pages:261-266 https://dx.doi.org/10.1134/S2070205110020140 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 46 2010 2 03 261-266 |
allfieldsSound |
10.1134/S2070205110020140 doi (DE-627)SPR016844815 (SPR)S2070205110020140-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Nikitin, K. N. verfasserin aut Behavior of a barrier layer of corrosion films on zirconium alloys 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. Oxide Film (dpeaa)DE-He213 Barrier Potential (dpeaa)DE-He213 Barrier Layer (dpeaa)DE-He213 Zirconium Alloy (dpeaa)DE-He213 Electrophysical Property (dpeaa)DE-He213 Shishov, V. N. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 46(2010), 2 vom: März, Seite 261-266 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:46 year:2010 number:2 month:03 pages:261-266 https://dx.doi.org/10.1134/S2070205110020140 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 46 2010 2 03 261-266 |
language |
English |
source |
Enthalten in Protection of metals 46(2010), 2 vom: März, Seite 261-266 volume:46 year:2010 number:2 month:03 pages:261-266 |
sourceStr |
Enthalten in Protection of metals 46(2010), 2 vom: März, Seite 261-266 volume:46 year:2010 number:2 month:03 pages:261-266 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Oxide Film Barrier Potential Barrier Layer Zirconium Alloy Electrophysical Property |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Protection of metals |
authorswithroles_txt_mv |
Nikitin, K. N. @@aut@@ Shishov, V. N. @@aut@@ |
publishDateDaySort_date |
2010-03-01T00:00:00Z |
hierarchy_top_id |
334712300 |
dewey-sort |
3670 |
id |
SPR016844815 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR016844815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111041852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S2070205110020140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR016844815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S2070205110020140-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikitin, K. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Behavior of a barrier layer of corrosion films on zirconium alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxide Film</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barrier Potential</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barrier Layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zirconium Alloy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrophysical Property</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shishov, V. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Protection of metals</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodica Publ., 2000</subfield><subfield code="g">46(2010), 2 vom: März, Seite 261-266</subfield><subfield code="w">(DE-627)334712300</subfield><subfield code="w">(DE-600)2058128-2</subfield><subfield code="x">1608-327X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:261-266</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S2070205110020140</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">261-266</subfield></datafield></record></collection>
|
author |
Nikitin, K. N. |
spellingShingle |
Nikitin, K. N. ddc 670 bkl 52.78 misc Oxide Film misc Barrier Potential misc Barrier Layer misc Zirconium Alloy misc Electrophysical Property Behavior of a barrier layer of corrosion films on zirconium alloys |
authorStr |
Nikitin, K. N. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)334712300 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1608-327X |
topic_title |
670 ASE 52.78 bkl Behavior of a barrier layer of corrosion films on zirconium alloys Oxide Film (dpeaa)DE-He213 Barrier Potential (dpeaa)DE-He213 Barrier Layer (dpeaa)DE-He213 Zirconium Alloy (dpeaa)DE-He213 Electrophysical Property (dpeaa)DE-He213 |
topic |
ddc 670 bkl 52.78 misc Oxide Film misc Barrier Potential misc Barrier Layer misc Zirconium Alloy misc Electrophysical Property |
topic_unstemmed |
ddc 670 bkl 52.78 misc Oxide Film misc Barrier Potential misc Barrier Layer misc Zirconium Alloy misc Electrophysical Property |
topic_browse |
ddc 670 bkl 52.78 misc Oxide Film misc Barrier Potential misc Barrier Layer misc Zirconium Alloy misc Electrophysical Property |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Protection of metals |
hierarchy_parent_id |
334712300 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Protection of metals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)334712300 (DE-600)2058128-2 |
title |
Behavior of a barrier layer of corrosion films on zirconium alloys |
ctrlnum |
(DE-627)SPR016844815 (SPR)S2070205110020140-e |
title_full |
Behavior of a barrier layer of corrosion films on zirconium alloys |
author_sort |
Nikitin, K. N. |
journal |
Protection of metals |
journalStr |
Protection of metals |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
261 |
author_browse |
Nikitin, K. N. Shishov, V. N. |
container_volume |
46 |
class |
670 ASE 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Nikitin, K. N. |
doi_str_mv |
10.1134/S2070205110020140 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
behavior of a barrier layer of corrosion films on zirconium alloys |
title_auth |
Behavior of a barrier layer of corrosion films on zirconium alloys |
abstract |
Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. |
abstractGer |
Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. |
abstract_unstemmed |
Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
2 |
title_short |
Behavior of a barrier layer of corrosion films on zirconium alloys |
url |
https://dx.doi.org/10.1134/S2070205110020140 |
remote_bool |
true |
author2 |
Shishov, V. N. |
author2Str |
Shishov, V. N. |
ppnlink |
334712300 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S2070205110020140 |
up_date |
2024-07-04T01:08:30.552Z |
_version_ |
1803608717319471104 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR016844815</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111041852.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S2070205110020140</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR016844815</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S2070205110020140-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikitin, K. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Behavior of a barrier layer of corrosion films on zirconium alloys</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Capacitances of oxide films obtained on a EZ-1 alloy during the corrosion tests in water-vapor environment at 300, 350, and 400°C are measured. In order to estimate the thickness of a barrier layer, the barrier potential at a constant anodic current (dielectric puncture potential) is measured. It is shown that the barrier layer cannot be treated as a homogeneous environment. At the sites of intermetallide inclusions in the oxide film, the thickness of the dielectrics is locally decreased. In the first approximation, the heterogeneity of the oxide film can be taken into account by inserting two parallel RC subcircuits in the equivalent scheme. One subcircuit (C1, R1) describes the electrophysical properties of the capacitance whose insulator thickness corresponds to the total thickness of the oxide film. The other subcircuit (C2, R2) describes the electrophysical properties of the nonporous part of the oxide film between the intermetallide particles and the outer surface. Then, the results of measurements can be written as follows: Cexp = θC2 + (1 − θ)C1, where θ is the surface part of the oxide film whose dielectric properties are changed due to the inclusion of intermetallide particles. Assuming that the mean spatial size of intermetallide particles falls in the range of 200–400 nm, one can estimate the mean concentration of the particles on the metal surface in agreement with the metallographically determined concentration of the second-phase particles (approximately $ 10^{6} $–$ 10^{7} $ $ cm^{−2} $). The obtained results indicate the substantial heterogeneity of the barrier layer structure, which may cause local corrosion and premature failure of zirconium items.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxide Film</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barrier Potential</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Barrier Layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zirconium Alloy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrophysical Property</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shishov, V. N.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Protection of metals</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodica Publ., 2000</subfield><subfield code="g">46(2010), 2 vom: März, Seite 261-266</subfield><subfield code="w">(DE-627)334712300</subfield><subfield code="w">(DE-600)2058128-2</subfield><subfield code="x">1608-327X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:261-266</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S2070205110020140</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2010</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">261-266</subfield></datafield></record></collection>
|
score |
7.399419 |