Vacuum oxidation of freshly deposited iron nanofilms
Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microsc...
Ausführliche Beschreibung
Autor*in: |
Kotenev, V. A. [verfasserIn] Petrunin, M. A. [verfasserIn] Maksaeva, L. B. [verfasserIn] Timofeeva, V. A. [verfasserIn] Tsivadze, A. Yu. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Protection of metals - Moscow : MAIK Nauka/Interperiodica Publ., 2000, 49(2013), 4 vom: Juli, Seite 479-484 |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2013 ; number:4 ; month:07 ; pages:479-484 |
Links: |
---|
DOI / URN: |
10.1134/S2070205113040072 |
---|
Katalog-ID: |
SPR016849353 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR016849353 | ||
003 | DE-627 | ||
005 | 20220111041922.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S2070205113040072 |2 doi | |
035 | |a (DE-627)SPR016849353 | ||
035 | |a (SPR)S2070205113040072-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q ASE |
084 | |a 52.78 |2 bkl | ||
100 | 1 | |a Kotenev, V. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Vacuum oxidation of freshly deposited iron nanofilms |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). | ||
650 | 4 | |a Magnetite |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hematite |7 (dpeaa)DE-He213 | |
650 | 4 | |a Wustite |7 (dpeaa)DE-He213 | |
650 | 4 | |a Iron Layer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Oxide Shell |7 (dpeaa)DE-He213 | |
700 | 1 | |a Petrunin, M. A. |e verfasserin |4 aut | |
700 | 1 | |a Maksaeva, L. B. |e verfasserin |4 aut | |
700 | 1 | |a Timofeeva, V. A. |e verfasserin |4 aut | |
700 | 1 | |a Tsivadze, A. Yu. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Protection of metals |d Moscow : MAIK Nauka/Interperiodica Publ., 2000 |g 49(2013), 4 vom: Juli, Seite 479-484 |w (DE-627)334712300 |w (DE-600)2058128-2 |x 1608-327X |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2013 |g number:4 |g month:07 |g pages:479-484 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S2070205113040072 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 52.78 |q ASE |
951 | |a AR | ||
952 | |d 49 |j 2013 |e 4 |c 07 |h 479-484 |
author_variant |
v a k va vak m a p ma map l b m lb lbm v a t va vat a y t ay ayt |
---|---|
matchkey_str |
article:1608327X:2013----::aumxdtoofehyeoie |
hierarchy_sort_str |
2013 |
bklnumber |
52.78 |
publishDate |
2013 |
allfields |
10.1134/S2070205113040072 doi (DE-627)SPR016849353 (SPR)S2070205113040072-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Kotenev, V. A. verfasserin aut Vacuum oxidation of freshly deposited iron nanofilms 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). Magnetite (dpeaa)DE-He213 Hematite (dpeaa)DE-He213 Wustite (dpeaa)DE-He213 Iron Layer (dpeaa)DE-He213 Oxide Shell (dpeaa)DE-He213 Petrunin, M. A. verfasserin aut Maksaeva, L. B. verfasserin aut Timofeeva, V. A. verfasserin aut Tsivadze, A. Yu. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 49(2013), 4 vom: Juli, Seite 479-484 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:49 year:2013 number:4 month:07 pages:479-484 https://dx.doi.org/10.1134/S2070205113040072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 49 2013 4 07 479-484 |
spelling |
10.1134/S2070205113040072 doi (DE-627)SPR016849353 (SPR)S2070205113040072-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Kotenev, V. A. verfasserin aut Vacuum oxidation of freshly deposited iron nanofilms 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). Magnetite (dpeaa)DE-He213 Hematite (dpeaa)DE-He213 Wustite (dpeaa)DE-He213 Iron Layer (dpeaa)DE-He213 Oxide Shell (dpeaa)DE-He213 Petrunin, M. A. verfasserin aut Maksaeva, L. B. verfasserin aut Timofeeva, V. A. verfasserin aut Tsivadze, A. Yu. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 49(2013), 4 vom: Juli, Seite 479-484 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:49 year:2013 number:4 month:07 pages:479-484 https://dx.doi.org/10.1134/S2070205113040072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 49 2013 4 07 479-484 |
allfields_unstemmed |
10.1134/S2070205113040072 doi (DE-627)SPR016849353 (SPR)S2070205113040072-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Kotenev, V. A. verfasserin aut Vacuum oxidation of freshly deposited iron nanofilms 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). Magnetite (dpeaa)DE-He213 Hematite (dpeaa)DE-He213 Wustite (dpeaa)DE-He213 Iron Layer (dpeaa)DE-He213 Oxide Shell (dpeaa)DE-He213 Petrunin, M. A. verfasserin aut Maksaeva, L. B. verfasserin aut Timofeeva, V. A. verfasserin aut Tsivadze, A. Yu. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 49(2013), 4 vom: Juli, Seite 479-484 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:49 year:2013 number:4 month:07 pages:479-484 https://dx.doi.org/10.1134/S2070205113040072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 49 2013 4 07 479-484 |
allfieldsGer |
10.1134/S2070205113040072 doi (DE-627)SPR016849353 (SPR)S2070205113040072-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Kotenev, V. A. verfasserin aut Vacuum oxidation of freshly deposited iron nanofilms 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). Magnetite (dpeaa)DE-He213 Hematite (dpeaa)DE-He213 Wustite (dpeaa)DE-He213 Iron Layer (dpeaa)DE-He213 Oxide Shell (dpeaa)DE-He213 Petrunin, M. A. verfasserin aut Maksaeva, L. B. verfasserin aut Timofeeva, V. A. verfasserin aut Tsivadze, A. Yu. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 49(2013), 4 vom: Juli, Seite 479-484 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:49 year:2013 number:4 month:07 pages:479-484 https://dx.doi.org/10.1134/S2070205113040072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 49 2013 4 07 479-484 |
allfieldsSound |
10.1134/S2070205113040072 doi (DE-627)SPR016849353 (SPR)S2070205113040072-e DE-627 ger DE-627 rakwb eng 670 ASE 52.78 bkl Kotenev, V. A. verfasserin aut Vacuum oxidation of freshly deposited iron nanofilms 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). Magnetite (dpeaa)DE-He213 Hematite (dpeaa)DE-He213 Wustite (dpeaa)DE-He213 Iron Layer (dpeaa)DE-He213 Oxide Shell (dpeaa)DE-He213 Petrunin, M. A. verfasserin aut Maksaeva, L. B. verfasserin aut Timofeeva, V. A. verfasserin aut Tsivadze, A. Yu. verfasserin aut Enthalten in Protection of metals Moscow : MAIK Nauka/Interperiodica Publ., 2000 49(2013), 4 vom: Juli, Seite 479-484 (DE-627)334712300 (DE-600)2058128-2 1608-327X nnns volume:49 year:2013 number:4 month:07 pages:479-484 https://dx.doi.org/10.1134/S2070205113040072 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 52.78 ASE AR 49 2013 4 07 479-484 |
language |
English |
source |
Enthalten in Protection of metals 49(2013), 4 vom: Juli, Seite 479-484 volume:49 year:2013 number:4 month:07 pages:479-484 |
sourceStr |
Enthalten in Protection of metals 49(2013), 4 vom: Juli, Seite 479-484 volume:49 year:2013 number:4 month:07 pages:479-484 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Magnetite Hematite Wustite Iron Layer Oxide Shell |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Protection of metals |
authorswithroles_txt_mv |
Kotenev, V. A. @@aut@@ Petrunin, M. A. @@aut@@ Maksaeva, L. B. @@aut@@ Timofeeva, V. A. @@aut@@ Tsivadze, A. Yu. @@aut@@ |
publishDateDaySort_date |
2013-07-01T00:00:00Z |
hierarchy_top_id |
334712300 |
dewey-sort |
3670 |
id |
SPR016849353 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR016849353</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111041922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S2070205113040072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR016849353</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S2070205113040072-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotenev, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vacuum oxidation of freshly deposited iron nanofilms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hematite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wustite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron Layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxide Shell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrunin, M. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksaeva, L. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timofeeva, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsivadze, A. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Protection of metals</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodica Publ., 2000</subfield><subfield code="g">49(2013), 4 vom: Juli, Seite 479-484</subfield><subfield code="w">(DE-627)334712300</subfield><subfield code="w">(DE-600)2058128-2</subfield><subfield code="x">1608-327X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:479-484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S2070205113040072</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">479-484</subfield></datafield></record></collection>
|
author |
Kotenev, V. A. |
spellingShingle |
Kotenev, V. A. ddc 670 bkl 52.78 misc Magnetite misc Hematite misc Wustite misc Iron Layer misc Oxide Shell Vacuum oxidation of freshly deposited iron nanofilms |
authorStr |
Kotenev, V. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)334712300 |
format |
electronic Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1608-327X |
topic_title |
670 ASE 52.78 bkl Vacuum oxidation of freshly deposited iron nanofilms Magnetite (dpeaa)DE-He213 Hematite (dpeaa)DE-He213 Wustite (dpeaa)DE-He213 Iron Layer (dpeaa)DE-He213 Oxide Shell (dpeaa)DE-He213 |
topic |
ddc 670 bkl 52.78 misc Magnetite misc Hematite misc Wustite misc Iron Layer misc Oxide Shell |
topic_unstemmed |
ddc 670 bkl 52.78 misc Magnetite misc Hematite misc Wustite misc Iron Layer misc Oxide Shell |
topic_browse |
ddc 670 bkl 52.78 misc Magnetite misc Hematite misc Wustite misc Iron Layer misc Oxide Shell |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Protection of metals |
hierarchy_parent_id |
334712300 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Protection of metals |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)334712300 (DE-600)2058128-2 |
title |
Vacuum oxidation of freshly deposited iron nanofilms |
ctrlnum |
(DE-627)SPR016849353 (SPR)S2070205113040072-e |
title_full |
Vacuum oxidation of freshly deposited iron nanofilms |
author_sort |
Kotenev, V. A. |
journal |
Protection of metals |
journalStr |
Protection of metals |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
479 |
author_browse |
Kotenev, V. A. Petrunin, M. A. Maksaeva, L. B. Timofeeva, V. A. Tsivadze, A. Yu. |
container_volume |
49 |
class |
670 ASE 52.78 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Kotenev, V. A. |
doi_str_mv |
10.1134/S2070205113040072 |
dewey-full |
670 |
author2-role |
verfasserin |
title_sort |
vacuum oxidation of freshly deposited iron nanofilms |
title_auth |
Vacuum oxidation of freshly deposited iron nanofilms |
abstract |
Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). |
abstractGer |
Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). |
abstract_unstemmed |
Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
4 |
title_short |
Vacuum oxidation of freshly deposited iron nanofilms |
url |
https://dx.doi.org/10.1134/S2070205113040072 |
remote_bool |
true |
author2 |
Petrunin, M. A. Maksaeva, L. B. Timofeeva, V. A. Tsivadze, A. Yu |
author2Str |
Petrunin, M. A. Maksaeva, L. B. Timofeeva, V. A. Tsivadze, A. Yu |
ppnlink |
334712300 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S2070205113040072 |
up_date |
2024-07-04T01:09:24.422Z |
_version_ |
1803608773823037440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR016849353</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111041922.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S2070205113040072</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR016849353</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S2070205113040072-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.78</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kotenev, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Vacuum oxidation of freshly deposited iron nanofilms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The interaction between freshly deposited iron films and oxygen at different evacuation degrees (from $ 10^{−5} $ to 760 mmHg) and room temperature is studied with the use of gravimetry (weighing with quartz nanobalance) and atomic force microscopy. According to data of atomic force microscopy, upon deposition of the metal on a glass substrate and during its subsequent oxidation, a metal-oxide composite film composed of metal-oxide nanoparticles with sizes of 20–30 nm where a metal core is covered with an oxide shell is formed. The reaction between freshly deposited iron and oxygen is shown to proceed quickly already at a pressure of $ 10^{−5} $ mmHg. An increase in the pressure is found to result in an increase in the bulk oxidation degree of the film. The growth kinetics of the film is two-stage. The initial oxidation stage can approximately be described with a linear-logarithmic dependence. The thinner the deposited iron nanolayer, the higher the bulk oxidation degree. The large value of the rate of initial oxidation of freshly deposited layer at a pressure of $ 10^{−5} $ mmHg, can be related to redox processes at the magnetite-hematite interfaces of multilayer nanoparticles that constitute the deposited nanocomposite layer. Upon passivation of the layer, the inherent nanoporosity makes the metal-oxide nanocomposite an adsorbent that can accumulate and store the adsorbed components of the environment (air).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hematite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wustite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Iron Layer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Oxide Shell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Petrunin, M. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maksaeva, L. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Timofeeva, V. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tsivadze, A. Yu.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Protection of metals</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodica Publ., 2000</subfield><subfield code="g">49(2013), 4 vom: Juli, Seite 479-484</subfield><subfield code="w">(DE-627)334712300</subfield><subfield code="w">(DE-600)2058128-2</subfield><subfield code="x">1608-327X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:479-484</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S2070205113040072</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.78</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">479-484</subfield></datafield></record></collection>
|
score |
7.4015665 |