Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics
Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambigu...
Ausführliche Beschreibung
Autor*in: |
Muhanna, Rafi L. [verfasserIn] Zhang, Hao [verfasserIn] Mullen, Robert L. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2006 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Reliable computing - [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995, 13(2006), 2 vom: 20. Dez., Seite 173-194 |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2006 ; number:2 ; day:20 ; month:12 ; pages:173-194 |
Links: |
---|
DOI / URN: |
10.1007/s11155-006-9024-3 |
---|
Katalog-ID: |
SPR017161304 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR017161304 | ||
003 | DE-627 | ||
005 | 20220111050826.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2006 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11155-006-9024-3 |2 doi | |
035 | |a (DE-627)SPR017161304 | ||
035 | |a (SPR)s11155-006-9024-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 004 |q ASE |
084 | |a 31.73 |2 bkl | ||
100 | 1 | |a Muhanna, Rafi L. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics |
264 | 1 | |c 2006 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. | ||
650 | 4 | |a Interval Variable |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interval Analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interval Arithmetic |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lagrange Multiplier Method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Interval Parameter |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, Hao |e verfasserin |4 aut | |
700 | 1 | |a Mullen, Robert L. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Reliable computing |d [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995 |g 13(2006), 2 vom: 20. Dez., Seite 173-194 |w (DE-627)320436284 |w (DE-600)2004383-1 |x 1573-1340 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2006 |g number:2 |g day:20 |g month:12 |g pages:173-194 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11155-006-9024-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
936 | b | k | |a 31.73 |q ASE |
951 | |a AR | ||
952 | |d 13 |j 2006 |e 2 |b 20 |c 12 |h 173-194 |
author_variant |
r l m rl rlm h z hz r l m rl rlm |
---|---|
matchkey_str |
article:15731340:2006----::nevliielmnssbssognrlzdoesfnetit |
hierarchy_sort_str |
2006 |
bklnumber |
31.73 |
publishDate |
2006 |
allfields |
10.1007/s11155-006-9024-3 doi (DE-627)SPR017161304 (SPR)s11155-006-9024-3-e DE-627 ger DE-627 rakwb eng 510 004 ASE 31.73 bkl Muhanna, Rafi L. verfasserin aut Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. Interval Variable (dpeaa)DE-He213 Interval Analysis (dpeaa)DE-He213 Interval Arithmetic (dpeaa)DE-He213 Lagrange Multiplier Method (dpeaa)DE-He213 Interval Parameter (dpeaa)DE-He213 Zhang, Hao verfasserin aut Mullen, Robert L. verfasserin aut Enthalten in Reliable computing [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995 13(2006), 2 vom: 20. Dez., Seite 173-194 (DE-627)320436284 (DE-600)2004383-1 1573-1340 nnns volume:13 year:2006 number:2 day:20 month:12 pages:173-194 https://dx.doi.org/10.1007/s11155-006-9024-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2048 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 31.73 ASE AR 13 2006 2 20 12 173-194 |
spelling |
10.1007/s11155-006-9024-3 doi (DE-627)SPR017161304 (SPR)s11155-006-9024-3-e DE-627 ger DE-627 rakwb eng 510 004 ASE 31.73 bkl Muhanna, Rafi L. verfasserin aut Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. Interval Variable (dpeaa)DE-He213 Interval Analysis (dpeaa)DE-He213 Interval Arithmetic (dpeaa)DE-He213 Lagrange Multiplier Method (dpeaa)DE-He213 Interval Parameter (dpeaa)DE-He213 Zhang, Hao verfasserin aut Mullen, Robert L. verfasserin aut Enthalten in Reliable computing [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995 13(2006), 2 vom: 20. Dez., Seite 173-194 (DE-627)320436284 (DE-600)2004383-1 1573-1340 nnns volume:13 year:2006 number:2 day:20 month:12 pages:173-194 https://dx.doi.org/10.1007/s11155-006-9024-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2048 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 31.73 ASE AR 13 2006 2 20 12 173-194 |
allfields_unstemmed |
10.1007/s11155-006-9024-3 doi (DE-627)SPR017161304 (SPR)s11155-006-9024-3-e DE-627 ger DE-627 rakwb eng 510 004 ASE 31.73 bkl Muhanna, Rafi L. verfasserin aut Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. Interval Variable (dpeaa)DE-He213 Interval Analysis (dpeaa)DE-He213 Interval Arithmetic (dpeaa)DE-He213 Lagrange Multiplier Method (dpeaa)DE-He213 Interval Parameter (dpeaa)DE-He213 Zhang, Hao verfasserin aut Mullen, Robert L. verfasserin aut Enthalten in Reliable computing [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995 13(2006), 2 vom: 20. Dez., Seite 173-194 (DE-627)320436284 (DE-600)2004383-1 1573-1340 nnns volume:13 year:2006 number:2 day:20 month:12 pages:173-194 https://dx.doi.org/10.1007/s11155-006-9024-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2048 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 31.73 ASE AR 13 2006 2 20 12 173-194 |
allfieldsGer |
10.1007/s11155-006-9024-3 doi (DE-627)SPR017161304 (SPR)s11155-006-9024-3-e DE-627 ger DE-627 rakwb eng 510 004 ASE 31.73 bkl Muhanna, Rafi L. verfasserin aut Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. Interval Variable (dpeaa)DE-He213 Interval Analysis (dpeaa)DE-He213 Interval Arithmetic (dpeaa)DE-He213 Lagrange Multiplier Method (dpeaa)DE-He213 Interval Parameter (dpeaa)DE-He213 Zhang, Hao verfasserin aut Mullen, Robert L. verfasserin aut Enthalten in Reliable computing [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995 13(2006), 2 vom: 20. Dez., Seite 173-194 (DE-627)320436284 (DE-600)2004383-1 1573-1340 nnns volume:13 year:2006 number:2 day:20 month:12 pages:173-194 https://dx.doi.org/10.1007/s11155-006-9024-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2048 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 31.73 ASE AR 13 2006 2 20 12 173-194 |
allfieldsSound |
10.1007/s11155-006-9024-3 doi (DE-627)SPR017161304 (SPR)s11155-006-9024-3-e DE-627 ger DE-627 rakwb eng 510 004 ASE 31.73 bkl Muhanna, Rafi L. verfasserin aut Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics 2006 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. Interval Variable (dpeaa)DE-He213 Interval Analysis (dpeaa)DE-He213 Interval Arithmetic (dpeaa)DE-He213 Lagrange Multiplier Method (dpeaa)DE-He213 Interval Parameter (dpeaa)DE-He213 Zhang, Hao verfasserin aut Mullen, Robert L. verfasserin aut Enthalten in Reliable computing [Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995 13(2006), 2 vom: 20. Dez., Seite 173-194 (DE-627)320436284 (DE-600)2004383-1 1573-1340 nnns volume:13 year:2006 number:2 day:20 month:12 pages:173-194 https://dx.doi.org/10.1007/s11155-006-9024-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2048 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 31.73 ASE AR 13 2006 2 20 12 173-194 |
language |
English |
source |
Enthalten in Reliable computing 13(2006), 2 vom: 20. Dez., Seite 173-194 volume:13 year:2006 number:2 day:20 month:12 pages:173-194 |
sourceStr |
Enthalten in Reliable computing 13(2006), 2 vom: 20. Dez., Seite 173-194 volume:13 year:2006 number:2 day:20 month:12 pages:173-194 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Interval Variable Interval Analysis Interval Arithmetic Lagrange Multiplier Method Interval Parameter |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Reliable computing |
authorswithroles_txt_mv |
Muhanna, Rafi L. @@aut@@ Zhang, Hao @@aut@@ Mullen, Robert L. @@aut@@ |
publishDateDaySort_date |
2006-12-20T00:00:00Z |
hierarchy_top_id |
320436284 |
dewey-sort |
3510 |
id |
SPR017161304 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR017161304</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111050826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11155-006-9024-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR017161304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11155-006-9024-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muhanna, Rafi L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Variable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Arithmetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange Multiplier Method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Parameter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mullen, Robert L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Reliable computing</subfield><subfield code="d">[Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995</subfield><subfield code="g">13(2006), 2 vom: 20. Dez., Seite 173-194</subfield><subfield code="w">(DE-627)320436284</subfield><subfield code="w">(DE-600)2004383-1</subfield><subfield code="x">1573-1340</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:173-194</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11155-006-9024-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2006</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">12</subfield><subfield code="h">173-194</subfield></datafield></record></collection>
|
author |
Muhanna, Rafi L. |
spellingShingle |
Muhanna, Rafi L. ddc 510 bkl 31.73 misc Interval Variable misc Interval Analysis misc Interval Arithmetic misc Lagrange Multiplier Method misc Interval Parameter Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics |
authorStr |
Muhanna, Rafi L. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)320436284 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-1340 |
topic_title |
510 004 ASE 31.73 bkl Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics Interval Variable (dpeaa)DE-He213 Interval Analysis (dpeaa)DE-He213 Interval Arithmetic (dpeaa)DE-He213 Lagrange Multiplier Method (dpeaa)DE-He213 Interval Parameter (dpeaa)DE-He213 |
topic |
ddc 510 bkl 31.73 misc Interval Variable misc Interval Analysis misc Interval Arithmetic misc Lagrange Multiplier Method misc Interval Parameter |
topic_unstemmed |
ddc 510 bkl 31.73 misc Interval Variable misc Interval Analysis misc Interval Arithmetic misc Lagrange Multiplier Method misc Interval Parameter |
topic_browse |
ddc 510 bkl 31.73 misc Interval Variable misc Interval Analysis misc Interval Arithmetic misc Lagrange Multiplier Method misc Interval Parameter |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Reliable computing |
hierarchy_parent_id |
320436284 |
dewey-tens |
510 - Mathematics 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Reliable computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)320436284 (DE-600)2004383-1 |
title |
Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics |
ctrlnum |
(DE-627)SPR017161304 (SPR)s11155-006-9024-3-e |
title_full |
Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics |
author_sort |
Muhanna, Rafi L. |
journal |
Reliable computing |
journalStr |
Reliable computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2006 |
contenttype_str_mv |
txt |
container_start_page |
173 |
author_browse |
Muhanna, Rafi L. Zhang, Hao Mullen, Robert L. |
container_volume |
13 |
class |
510 004 ASE 31.73 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Muhanna, Rafi L. |
doi_str_mv |
10.1007/s11155-006-9024-3 |
dewey-full |
510 004 |
author2-role |
verfasserin |
title_sort |
interval finite elements as a basis for generalized models of uncertainty in engineering mechanics |
title_auth |
Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics |
abstract |
Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. |
abstractGer |
Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. |
abstract_unstemmed |
Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-ASE GBV_ILN_20 GBV_ILN_24 GBV_ILN_31 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2048 GBV_ILN_2190 GBV_ILN_2522 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 |
container_issue |
2 |
title_short |
Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics |
url |
https://dx.doi.org/10.1007/s11155-006-9024-3 |
remote_bool |
true |
author2 |
Zhang, Hao Mullen, Robert L. |
author2Str |
Zhang, Hao Mullen, Robert L. |
ppnlink |
320436284 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11155-006-9024-3 |
up_date |
2024-07-04T02:25:56.483Z |
_version_ |
1803613588931215360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR017161304</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111050826.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2006 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11155-006-9024-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR017161304</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11155-006-9024-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.73</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Muhanna, Rafi L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interval Finite Elements as a Basis for Generalized Models of Uncertainty in Engineering Mechanics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2006</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Latest scientific and engineering advances have started to recognize the need for defining multiple types of uncertainty. Probabilistic modeling cannot handle situations with incomplete or little information on which to evaluate a probability, or when that information is nonspecific, ambiguous, or conflicting [12], [47], [50]. Many interval-based uncertainty models have been developed to treat such situations. This paper presents an interval approach for the treatment of parameter uncertainty for linear static structural mechanics problems. Uncertain parameters are introduced in the form of unknown but bounded quantities (intervals). Interval analysis is applied to the Finite Element Method (FEM) to analyze the system response due to uncertain stiffness and loading. To avoid overestimation, the formulation is based on an element-by-element (EBE) technique. Element matrices are formulated, based on the physics of materials, and the Lagrange multiplier method is applied to impose the necessary constraints for compatibility and equilibrium. Earlier EBE formulation provided sharp bounds only on displacements [32]. Based on the developed formulation, the bounds on the system’s displacements and element forces are obtained simultaneously and have the same level of accuracy. Very sharp enclosures for the exact system responses are obtained. A number of numerical examples are introduced, and scalability is illustrated.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Variable</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Arithmetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lagrange Multiplier Method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Interval Parameter</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Hao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mullen, Robert L.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Reliable computing</subfield><subfield code="d">[Lafayette, Louisiana] : [University of Louisiana at Lafayette], 1995</subfield><subfield code="g">13(2006), 2 vom: 20. Dez., Seite 173-194</subfield><subfield code="w">(DE-627)320436284</subfield><subfield code="w">(DE-600)2004383-1</subfield><subfield code="x">1573-1340</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2006</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:173-194</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11155-006-9024-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.73</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2006</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">12</subfield><subfield code="h">173-194</subfield></datafield></record></collection>
|
score |
7.399357 |