Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs
Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly mode...
Ausführliche Beschreibung
Autor*in: |
Biryukov, Denis [verfasserIn] Kuchuk, Fikri J. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
Naturally fractured reservoirs Pressure transient well testing Pressure transient behavior of horizontal wells |
---|
Übergeordnetes Werk: |
Enthalten in: Transport in porous media - Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986, 110(2015), 3 vom: 07. Sept., Seite 369-408 |
---|---|
Übergeordnetes Werk: |
volume:110 ; year:2015 ; number:3 ; day:07 ; month:09 ; pages:369-408 |
Links: |
---|
DOI / URN: |
10.1007/s11242-015-0554-1 |
---|
Katalog-ID: |
SPR018077897 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR018077897 | ||
003 | DE-627 | ||
005 | 20220111055653.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11242-015-0554-1 |2 doi | |
035 | |a (DE-627)SPR018077897 | ||
035 | |a (SPR)s11242-015-0554-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q ASE |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Biryukov, Denis |e verfasserin |4 aut | |
245 | 1 | 0 | |a Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. | ||
650 | 4 | |a Naturally fractured reservoirs |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pressure transient well testing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pressure transient behavior of horizontal wells |7 (dpeaa)DE-He213 | |
650 | 4 | |a Multistage hydraulic fractures |7 (dpeaa)DE-He213 | |
650 | 4 | |a Boundary element method |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kuchuk, Fikri J. |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Transport in porous media |d Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 |g 110(2015), 3 vom: 07. Sept., Seite 369-408 |w (DE-627)269017720 |w (DE-600)1473676-7 |x 1573-1634 |7 nnns |
773 | 1 | 8 | |g volume:110 |g year:2015 |g number:3 |g day:07 |g month:09 |g pages:369-408 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11242-015-0554-1 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2360 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 33.00 |q ASE |
951 | |a AR | ||
952 | |d 110 |j 2015 |e 3 |b 07 |c 09 |h 369-408 |
author_variant |
d b db f j k fj fjk |
---|---|
matchkey_str |
article:15731634:2015----::rsuerninbhvoohrznawlsnescigutpeyruifatrs |
hierarchy_sort_str |
2015 |
bklnumber |
33.00 |
publishDate |
2015 |
allfields |
10.1007/s11242-015-0554-1 doi (DE-627)SPR018077897 (SPR)s11242-015-0554-1-e DE-627 ger DE-627 rakwb eng 530 ASE 33.00 bkl Biryukov, Denis verfasserin aut Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. Naturally fractured reservoirs (dpeaa)DE-He213 Pressure transient well testing (dpeaa)DE-He213 Pressure transient behavior of horizontal wells (dpeaa)DE-He213 Multistage hydraulic fractures (dpeaa)DE-He213 Boundary element method (dpeaa)DE-He213 Kuchuk, Fikri J. verfasserin aut Enthalten in Transport in porous media Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 110(2015), 3 vom: 07. Sept., Seite 369-408 (DE-627)269017720 (DE-600)1473676-7 1573-1634 nnns volume:110 year:2015 number:3 day:07 month:09 pages:369-408 https://dx.doi.org/10.1007/s11242-015-0554-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 ASE AR 110 2015 3 07 09 369-408 |
spelling |
10.1007/s11242-015-0554-1 doi (DE-627)SPR018077897 (SPR)s11242-015-0554-1-e DE-627 ger DE-627 rakwb eng 530 ASE 33.00 bkl Biryukov, Denis verfasserin aut Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. Naturally fractured reservoirs (dpeaa)DE-He213 Pressure transient well testing (dpeaa)DE-He213 Pressure transient behavior of horizontal wells (dpeaa)DE-He213 Multistage hydraulic fractures (dpeaa)DE-He213 Boundary element method (dpeaa)DE-He213 Kuchuk, Fikri J. verfasserin aut Enthalten in Transport in porous media Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 110(2015), 3 vom: 07. Sept., Seite 369-408 (DE-627)269017720 (DE-600)1473676-7 1573-1634 nnns volume:110 year:2015 number:3 day:07 month:09 pages:369-408 https://dx.doi.org/10.1007/s11242-015-0554-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 ASE AR 110 2015 3 07 09 369-408 |
allfields_unstemmed |
10.1007/s11242-015-0554-1 doi (DE-627)SPR018077897 (SPR)s11242-015-0554-1-e DE-627 ger DE-627 rakwb eng 530 ASE 33.00 bkl Biryukov, Denis verfasserin aut Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. Naturally fractured reservoirs (dpeaa)DE-He213 Pressure transient well testing (dpeaa)DE-He213 Pressure transient behavior of horizontal wells (dpeaa)DE-He213 Multistage hydraulic fractures (dpeaa)DE-He213 Boundary element method (dpeaa)DE-He213 Kuchuk, Fikri J. verfasserin aut Enthalten in Transport in porous media Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 110(2015), 3 vom: 07. Sept., Seite 369-408 (DE-627)269017720 (DE-600)1473676-7 1573-1634 nnns volume:110 year:2015 number:3 day:07 month:09 pages:369-408 https://dx.doi.org/10.1007/s11242-015-0554-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 ASE AR 110 2015 3 07 09 369-408 |
allfieldsGer |
10.1007/s11242-015-0554-1 doi (DE-627)SPR018077897 (SPR)s11242-015-0554-1-e DE-627 ger DE-627 rakwb eng 530 ASE 33.00 bkl Biryukov, Denis verfasserin aut Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. Naturally fractured reservoirs (dpeaa)DE-He213 Pressure transient well testing (dpeaa)DE-He213 Pressure transient behavior of horizontal wells (dpeaa)DE-He213 Multistage hydraulic fractures (dpeaa)DE-He213 Boundary element method (dpeaa)DE-He213 Kuchuk, Fikri J. verfasserin aut Enthalten in Transport in porous media Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 110(2015), 3 vom: 07. Sept., Seite 369-408 (DE-627)269017720 (DE-600)1473676-7 1573-1634 nnns volume:110 year:2015 number:3 day:07 month:09 pages:369-408 https://dx.doi.org/10.1007/s11242-015-0554-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 ASE AR 110 2015 3 07 09 369-408 |
allfieldsSound |
10.1007/s11242-015-0554-1 doi (DE-627)SPR018077897 (SPR)s11242-015-0554-1-e DE-627 ger DE-627 rakwb eng 530 ASE 33.00 bkl Biryukov, Denis verfasserin aut Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. Naturally fractured reservoirs (dpeaa)DE-He213 Pressure transient well testing (dpeaa)DE-He213 Pressure transient behavior of horizontal wells (dpeaa)DE-He213 Multistage hydraulic fractures (dpeaa)DE-He213 Boundary element method (dpeaa)DE-He213 Kuchuk, Fikri J. verfasserin aut Enthalten in Transport in porous media Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986 110(2015), 3 vom: 07. Sept., Seite 369-408 (DE-627)269017720 (DE-600)1473676-7 1573-1634 nnns volume:110 year:2015 number:3 day:07 month:09 pages:369-408 https://dx.doi.org/10.1007/s11242-015-0554-1 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 33.00 ASE AR 110 2015 3 07 09 369-408 |
language |
English |
source |
Enthalten in Transport in porous media 110(2015), 3 vom: 07. Sept., Seite 369-408 volume:110 year:2015 number:3 day:07 month:09 pages:369-408 |
sourceStr |
Enthalten in Transport in porous media 110(2015), 3 vom: 07. Sept., Seite 369-408 volume:110 year:2015 number:3 day:07 month:09 pages:369-408 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Naturally fractured reservoirs Pressure transient well testing Pressure transient behavior of horizontal wells Multistage hydraulic fractures Boundary element method |
dewey-raw |
530 |
isfreeaccess_bool |
true |
container_title |
Transport in porous media |
authorswithroles_txt_mv |
Biryukov, Denis @@aut@@ Kuchuk, Fikri J. @@aut@@ |
publishDateDaySort_date |
2015-09-07T00:00:00Z |
hierarchy_top_id |
269017720 |
dewey-sort |
3530 |
id |
SPR018077897 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR018077897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111055653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11242-015-0554-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR018077897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11242-015-0554-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biryukov, Denis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturally fractured reservoirs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure transient well testing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure transient behavior of horizontal wells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multistage hydraulic fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuchuk, Fikri J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transport in porous media</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986</subfield><subfield code="g">110(2015), 3 vom: 07. Sept., Seite 369-408</subfield><subfield code="w">(DE-627)269017720</subfield><subfield code="w">(DE-600)1473676-7</subfield><subfield code="x">1573-1634</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:369-408</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11242-015-0554-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">09</subfield><subfield code="h">369-408</subfield></datafield></record></collection>
|
author |
Biryukov, Denis |
spellingShingle |
Biryukov, Denis ddc 530 bkl 33.00 misc Naturally fractured reservoirs misc Pressure transient well testing misc Pressure transient behavior of horizontal wells misc Multistage hydraulic fractures misc Boundary element method Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs |
authorStr |
Biryukov, Denis |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)269017720 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1573-1634 |
topic_title |
530 ASE 33.00 bkl Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs Naturally fractured reservoirs (dpeaa)DE-He213 Pressure transient well testing (dpeaa)DE-He213 Pressure transient behavior of horizontal wells (dpeaa)DE-He213 Multistage hydraulic fractures (dpeaa)DE-He213 Boundary element method (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.00 misc Naturally fractured reservoirs misc Pressure transient well testing misc Pressure transient behavior of horizontal wells misc Multistage hydraulic fractures misc Boundary element method |
topic_unstemmed |
ddc 530 bkl 33.00 misc Naturally fractured reservoirs misc Pressure transient well testing misc Pressure transient behavior of horizontal wells misc Multistage hydraulic fractures misc Boundary element method |
topic_browse |
ddc 530 bkl 33.00 misc Naturally fractured reservoirs misc Pressure transient well testing misc Pressure transient behavior of horizontal wells misc Multistage hydraulic fractures misc Boundary element method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Transport in porous media |
hierarchy_parent_id |
269017720 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Transport in porous media |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)269017720 (DE-600)1473676-7 |
title |
Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs |
ctrlnum |
(DE-627)SPR018077897 (SPR)s11242-015-0554-1-e |
title_full |
Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs |
author_sort |
Biryukov, Denis |
journal |
Transport in porous media |
journalStr |
Transport in porous media |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
369 |
author_browse |
Biryukov, Denis Kuchuk, Fikri J. |
container_volume |
110 |
class |
530 ASE 33.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Biryukov, Denis |
doi_str_mv |
10.1007/s11242-015-0554-1 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
pressure transient behavior of horizontal wells intersecting multiple hydraulic fractures in naturally fractured reservoirs |
title_auth |
Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs |
abstract |
Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. |
abstractGer |
Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. |
abstract_unstemmed |
Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_381 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2360 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs |
url |
https://dx.doi.org/10.1007/s11242-015-0554-1 |
remote_bool |
true |
author2 |
Kuchuk, Fikri J. |
author2Str |
Kuchuk, Fikri J. |
ppnlink |
269017720 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11242-015-0554-1 |
up_date |
2024-07-03T17:11:55.846Z |
_version_ |
1803578733611712512 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR018077897</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111055653.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11242-015-0554-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR018077897</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11242-015-0554-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Biryukov, Denis</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pressure Transient Behavior of Horizontal Wells Intersecting Multiple Hydraulic Fractures in Naturally Fractured Reservoirs</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, we present a mesh-free semi-analytical technique for modeling pressure transient behavior of continuously and discretely hydraulically and naturally fractured reservoirs for a single-phase fluid. In our model, we consider a 3D reservoir, where each fracture is explicitly modeled without any upscaling or homogenization as required for dual-porosity media. Fractures can have finite or infinite conductivities, and the formation (matrix) is assumed to have a finite permeability. Our approach is based on the boundary element method. The method has advantages such as the absence of grids and reduced dimensionality. It provides continuous rather than discrete solutions. The uniform-pressure boundary condition over the wellbore is used in our mathematical model. This is the true physical boundary condition for any type of well, whether fractured or not, provided that the friction pressure drop in the wellbore is small and the fluid is Newtonian. The method is sufficiently general to be applied to many different well geometries and reservoir geological settings, where the spatial domain may include arbitrary fracture and/or fault distribution, a number of horizontal wells with and without hydraulic fractures, and different types of outer boundaries. The model also applies to multistage hydraulically fractured horizontal wells in homogenous reservoirs. More specifically, it is applied to investigate the pressure transient behavior of horizontal wells in continuously and discretely naturally fractured reservoirs, including multistage hydraulically fractured horizontal wells. A number of solutions have been published in the literature for horizontal wells in naturally fractured reservoirs using the conventional dual-porosity models that are not applicable to many of these reservoirs that contain horizontal wells with multiple fractures. Most published solutions for fractured horizontal wells in homogenous and naturally fractured reservoirs ignore the presence of the wellbore and the contribution to flow from the formation directly into the unfractured horizontal sections of the wellbore. Therefore, some of the flow regimes from these solutions are incorrect or do not exist, such as fracture-radial flow regime. In our solutions, all or some of multistage hydraulic fractures may intersect the natural fractures, which is very important for shale gas and oil reservoir production. The number and type of fractures (hydraulic or natural) intersecting the wellbore and with each other are not limited in both homogeneous and naturally fractured reservoirs. Our solutions are compared with a number of existing solutions published in the literature. Example diagnostic derivative plots are presented for a variety of horizontal wells with multiple fractures in homogenous and naturally fractured reservoirs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturally fractured reservoirs</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure transient well testing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pressure transient behavior of horizontal wells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multistage hydraulic fractures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Boundary element method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuchuk, Fikri J.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Transport in porous media</subfield><subfield code="d">Dordrecht [u.a.] : Springer Science + Business Media B.V, 1986</subfield><subfield code="g">110(2015), 3 vom: 07. Sept., Seite 369-408</subfield><subfield code="w">(DE-627)269017720</subfield><subfield code="w">(DE-600)1473676-7</subfield><subfield code="x">1573-1634</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:369-408</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11242-015-0554-1</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2360</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">09</subfield><subfield code="h">369-408</subfield></datafield></record></collection>
|
score |
7.4020844 |