A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms
Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a gi...
Ausführliche Beschreibung
Autor*in: |
Naskar, Ruchira [verfasserIn] Chakraborty, Rajat Subhra [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of VLSI signal processing systems for signal, image and video technology - Springer Netherlands, 1989, 82(2015), 3 vom: 12. Juni, Seite 373-389 |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2015 ; number:3 ; day:12 ; month:06 ; pages:373-389 |
Links: |
---|
DOI / URN: |
10.1007/s11265-015-1009-1 |
---|
Katalog-ID: |
SPR018329357 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR018329357 | ||
003 | DE-627 | ||
005 | 20201124222415.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11265-015-1009-1 |2 doi | |
035 | |a (DE-627)SPR018329357 | ||
035 | |a (SPR)s11265-015-1009-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Naskar, Ruchira |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. | ||
650 | 4 | |a Digital authentication |7 (dpeaa)DE-He213 | |
650 | 4 | |a Digital watermarking |7 (dpeaa)DE-He213 | |
650 | 4 | |a Performance estimation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reversible watermarking |7 (dpeaa)DE-He213 | |
650 | 4 | |a Statistical modelling |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chakraborty, Rajat Subhra |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of VLSI signal processing systems for signal, image and video technology |d Springer Netherlands, 1989 |g 82(2015), 3 vom: 12. Juni, Seite 373-389 |w (DE-627)SPR018308090 |7 nnns |
773 | 1 | 8 | |g volume:82 |g year:2015 |g number:3 |g day:12 |g month:06 |g pages:373-389 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11265-015-1009-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2027 | ||
951 | |a AR | ||
952 | |d 82 |j 2015 |e 3 |b 12 |c 06 |h 373-389 |
author_variant |
r n rn r s c rs rsc |
---|---|
matchkey_str |
naskarruchirachakrabortyrajatsubhra:2015----:tcnqeovlaepebudopromnefiepeitobsdees |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1007/s11265-015-1009-1 doi (DE-627)SPR018329357 (SPR)s11265-015-1009-1-e DE-627 ger DE-627 rakwb eng Naskar, Ruchira verfasserin aut A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. Digital authentication (dpeaa)DE-He213 Digital watermarking (dpeaa)DE-He213 Performance estimation (dpeaa)DE-He213 Reversible watermarking (dpeaa)DE-He213 Statistical modelling (dpeaa)DE-He213 Chakraborty, Rajat Subhra verfasserin aut Enthalten in Journal of VLSI signal processing systems for signal, image and video technology Springer Netherlands, 1989 82(2015), 3 vom: 12. Juni, Seite 373-389 (DE-627)SPR018308090 nnns volume:82 year:2015 number:3 day:12 month:06 pages:373-389 https://dx.doi.org/10.1007/s11265-015-1009-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_40 GBV_ILN_2006 GBV_ILN_2027 AR 82 2015 3 12 06 373-389 |
spelling |
10.1007/s11265-015-1009-1 doi (DE-627)SPR018329357 (SPR)s11265-015-1009-1-e DE-627 ger DE-627 rakwb eng Naskar, Ruchira verfasserin aut A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. Digital authentication (dpeaa)DE-He213 Digital watermarking (dpeaa)DE-He213 Performance estimation (dpeaa)DE-He213 Reversible watermarking (dpeaa)DE-He213 Statistical modelling (dpeaa)DE-He213 Chakraborty, Rajat Subhra verfasserin aut Enthalten in Journal of VLSI signal processing systems for signal, image and video technology Springer Netherlands, 1989 82(2015), 3 vom: 12. Juni, Seite 373-389 (DE-627)SPR018308090 nnns volume:82 year:2015 number:3 day:12 month:06 pages:373-389 https://dx.doi.org/10.1007/s11265-015-1009-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_40 GBV_ILN_2006 GBV_ILN_2027 AR 82 2015 3 12 06 373-389 |
allfields_unstemmed |
10.1007/s11265-015-1009-1 doi (DE-627)SPR018329357 (SPR)s11265-015-1009-1-e DE-627 ger DE-627 rakwb eng Naskar, Ruchira verfasserin aut A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. Digital authentication (dpeaa)DE-He213 Digital watermarking (dpeaa)DE-He213 Performance estimation (dpeaa)DE-He213 Reversible watermarking (dpeaa)DE-He213 Statistical modelling (dpeaa)DE-He213 Chakraborty, Rajat Subhra verfasserin aut Enthalten in Journal of VLSI signal processing systems for signal, image and video technology Springer Netherlands, 1989 82(2015), 3 vom: 12. Juni, Seite 373-389 (DE-627)SPR018308090 nnns volume:82 year:2015 number:3 day:12 month:06 pages:373-389 https://dx.doi.org/10.1007/s11265-015-1009-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_40 GBV_ILN_2006 GBV_ILN_2027 AR 82 2015 3 12 06 373-389 |
allfieldsGer |
10.1007/s11265-015-1009-1 doi (DE-627)SPR018329357 (SPR)s11265-015-1009-1-e DE-627 ger DE-627 rakwb eng Naskar, Ruchira verfasserin aut A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. Digital authentication (dpeaa)DE-He213 Digital watermarking (dpeaa)DE-He213 Performance estimation (dpeaa)DE-He213 Reversible watermarking (dpeaa)DE-He213 Statistical modelling (dpeaa)DE-He213 Chakraborty, Rajat Subhra verfasserin aut Enthalten in Journal of VLSI signal processing systems for signal, image and video technology Springer Netherlands, 1989 82(2015), 3 vom: 12. Juni, Seite 373-389 (DE-627)SPR018308090 nnns volume:82 year:2015 number:3 day:12 month:06 pages:373-389 https://dx.doi.org/10.1007/s11265-015-1009-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_40 GBV_ILN_2006 GBV_ILN_2027 AR 82 2015 3 12 06 373-389 |
allfieldsSound |
10.1007/s11265-015-1009-1 doi (DE-627)SPR018329357 (SPR)s11265-015-1009-1-e DE-627 ger DE-627 rakwb eng Naskar, Ruchira verfasserin aut A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. Digital authentication (dpeaa)DE-He213 Digital watermarking (dpeaa)DE-He213 Performance estimation (dpeaa)DE-He213 Reversible watermarking (dpeaa)DE-He213 Statistical modelling (dpeaa)DE-He213 Chakraborty, Rajat Subhra verfasserin aut Enthalten in Journal of VLSI signal processing systems for signal, image and video technology Springer Netherlands, 1989 82(2015), 3 vom: 12. Juni, Seite 373-389 (DE-627)SPR018308090 nnns volume:82 year:2015 number:3 day:12 month:06 pages:373-389 https://dx.doi.org/10.1007/s11265-015-1009-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_40 GBV_ILN_2006 GBV_ILN_2027 AR 82 2015 3 12 06 373-389 |
language |
English |
source |
Enthalten in Journal of VLSI signal processing systems for signal, image and video technology 82(2015), 3 vom: 12. Juni, Seite 373-389 volume:82 year:2015 number:3 day:12 month:06 pages:373-389 |
sourceStr |
Enthalten in Journal of VLSI signal processing systems for signal, image and video technology 82(2015), 3 vom: 12. Juni, Seite 373-389 volume:82 year:2015 number:3 day:12 month:06 pages:373-389 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Digital authentication Digital watermarking Performance estimation Reversible watermarking Statistical modelling |
isfreeaccess_bool |
false |
container_title |
Journal of VLSI signal processing systems for signal, image and video technology |
authorswithroles_txt_mv |
Naskar, Ruchira @@aut@@ Chakraborty, Rajat Subhra @@aut@@ |
publishDateDaySort_date |
2015-06-12T00:00:00Z |
hierarchy_top_id |
SPR018308090 |
id |
SPR018329357 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR018329357</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124222415.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11265-015-1009-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR018329357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11265-015-1009-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naskar, Ruchira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital authentication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital watermarking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reversible watermarking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical modelling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Rajat Subhra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of VLSI signal processing systems for signal, image and video technology</subfield><subfield code="d">Springer Netherlands, 1989</subfield><subfield code="g">82(2015), 3 vom: 12. Juni, Seite 373-389</subfield><subfield code="w">(DE-627)SPR018308090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:12</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:373-389</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11265-015-1009-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">12</subfield><subfield code="c">06</subfield><subfield code="h">373-389</subfield></datafield></record></collection>
|
author |
Naskar, Ruchira |
spellingShingle |
Naskar, Ruchira misc Digital authentication misc Digital watermarking misc Performance estimation misc Reversible watermarking misc Statistical modelling A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms |
authorStr |
Naskar, Ruchira |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR018308090 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms Digital authentication (dpeaa)DE-He213 Digital watermarking (dpeaa)DE-He213 Performance estimation (dpeaa)DE-He213 Reversible watermarking (dpeaa)DE-He213 Statistical modelling (dpeaa)DE-He213 |
topic |
misc Digital authentication misc Digital watermarking misc Performance estimation misc Reversible watermarking misc Statistical modelling |
topic_unstemmed |
misc Digital authentication misc Digital watermarking misc Performance estimation misc Reversible watermarking misc Statistical modelling |
topic_browse |
misc Digital authentication misc Digital watermarking misc Performance estimation misc Reversible watermarking misc Statistical modelling |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of VLSI signal processing systems for signal, image and video technology |
hierarchy_parent_id |
SPR018308090 |
hierarchy_top_title |
Journal of VLSI signal processing systems for signal, image and video technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR018308090 |
title |
A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms |
ctrlnum |
(DE-627)SPR018329357 (SPR)s11265-015-1009-1-e |
title_full |
A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms |
author_sort |
Naskar, Ruchira |
journal |
Journal of VLSI signal processing systems for signal, image and video technology |
journalStr |
Journal of VLSI signal processing systems for signal, image and video technology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
373 |
author_browse |
Naskar, Ruchira Chakraborty, Rajat Subhra |
container_volume |
82 |
format_se |
Elektronische Aufsätze |
author-letter |
Naskar, Ruchira |
doi_str_mv |
10.1007/s11265-015-1009-1 |
author2-role |
verfasserin |
title_sort |
technique to evaluate upper bounds on performance of pixel–prediction based reversible watermarking algorithms |
title_auth |
A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms |
abstract |
Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. |
abstractGer |
Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. |
abstract_unstemmed |
Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_40 GBV_ILN_2006 GBV_ILN_2027 |
container_issue |
3 |
title_short |
A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms |
url |
https://dx.doi.org/10.1007/s11265-015-1009-1 |
remote_bool |
true |
author2 |
Chakraborty, Rajat Subhra |
author2Str |
Chakraborty, Rajat Subhra |
ppnlink |
SPR018308090 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11265-015-1009-1 |
up_date |
2024-07-03T18:56:12.423Z |
_version_ |
1803585294100856832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR018329357</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20201124222415.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11265-015-1009-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR018329357</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11265-015-1009-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Naskar, Ruchira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Technique to Evaluate Upper Bounds on Performance of Pixel–prediction Based Reversible Watermarking Algorithms</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Reversible watermarking algorithms allow distortion–free recovery of the cover image after watermark extraction. Current state–of–the–art does not allow the prediction of the upper bounds of the embedding capacity and distortion characteristics of reversible watermarking algorithms for a given image. In this work, we develop a statistical modelling technique to derive closed form expressions for upper bounds on these performance metrics of pixel–prediction based reversible watermarking algorithms, independent of the actual algorithm used. Comparison of the derived metrics and performance trends with those obtained from two recently reported reversible watermarking algorithms show that the developed model is accurate and consistent.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital authentication</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Digital watermarking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Performance estimation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reversible watermarking</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical modelling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chakraborty, Rajat Subhra</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of VLSI signal processing systems for signal, image and video technology</subfield><subfield code="d">Springer Netherlands, 1989</subfield><subfield code="g">82(2015), 3 vom: 12. Juni, Seite 373-389</subfield><subfield code="w">(DE-627)SPR018308090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">day:12</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:373-389</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11265-015-1009-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="b">12</subfield><subfield code="c">06</subfield><subfield code="h">373-389</subfield></datafield></record></collection>
|
score |
7.401636 |