Distortion control of conjugacies between quadratic polynomials
Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials.
Autor*in: |
Cui, GuiZhen [verfasserIn] Tan, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 53(2010), 3 vom: März, Seite 625-634 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2010 ; number:3 ; month:03 ; pages:625-634 |
Links: |
---|
DOI / URN: |
10.1007/s11425-010-0041-7 |
---|
Katalog-ID: |
SPR019129890 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019129890 | ||
003 | DE-627 | ||
005 | 20220111064834.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11425-010-0041-7 |2 doi | |
035 | |a (DE-627)SPR019129890 | ||
035 | |a (SPR)s11425-010-0041-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 530 |a 520 |q ASE |
084 | |a 30.00 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Cui, GuiZhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Distortion control of conjugacies between quadratic polynomials |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. | ||
650 | 4 | |a distortion |7 (dpeaa)DE-He213 | |
650 | 4 | |a conjugacy |7 (dpeaa)DE-He213 | |
650 | 4 | |a polynomial |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tan, Lei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 53(2010), 3 vom: März, Seite 625-634 |w (DE-627)325695059 |w (DE-600)2038800-7 |x 1862-2763 |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2010 |g number:3 |g month:03 |g pages:625-634 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11425-010-0041-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 30.00 |q ASE |
936 | b | k | |a 31.00 |q ASE |
951 | |a AR | ||
952 | |d 53 |j 2010 |e 3 |c 03 |h 625-634 |
author_variant |
g c gc l t lt |
---|---|
matchkey_str |
article:18622763:2010----::itrinotoocnuaiseweqar |
hierarchy_sort_str |
2010 |
bklnumber |
30.00 31.00 |
publishDate |
2010 |
allfields |
10.1007/s11425-010-0041-7 doi (DE-627)SPR019129890 (SPR)s11425-010-0041-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Distortion control of conjugacies between quadratic polynomials 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. distortion (dpeaa)DE-He213 conjugacy (dpeaa)DE-He213 polynomial (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 53(2010), 3 vom: März, Seite 625-634 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:53 year:2010 number:3 month:03 pages:625-634 https://dx.doi.org/10.1007/s11425-010-0041-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 53 2010 3 03 625-634 |
spelling |
10.1007/s11425-010-0041-7 doi (DE-627)SPR019129890 (SPR)s11425-010-0041-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Distortion control of conjugacies between quadratic polynomials 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. distortion (dpeaa)DE-He213 conjugacy (dpeaa)DE-He213 polynomial (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 53(2010), 3 vom: März, Seite 625-634 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:53 year:2010 number:3 month:03 pages:625-634 https://dx.doi.org/10.1007/s11425-010-0041-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 53 2010 3 03 625-634 |
allfields_unstemmed |
10.1007/s11425-010-0041-7 doi (DE-627)SPR019129890 (SPR)s11425-010-0041-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Distortion control of conjugacies between quadratic polynomials 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. distortion (dpeaa)DE-He213 conjugacy (dpeaa)DE-He213 polynomial (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 53(2010), 3 vom: März, Seite 625-634 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:53 year:2010 number:3 month:03 pages:625-634 https://dx.doi.org/10.1007/s11425-010-0041-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 53 2010 3 03 625-634 |
allfieldsGer |
10.1007/s11425-010-0041-7 doi (DE-627)SPR019129890 (SPR)s11425-010-0041-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Distortion control of conjugacies between quadratic polynomials 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. distortion (dpeaa)DE-He213 conjugacy (dpeaa)DE-He213 polynomial (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 53(2010), 3 vom: März, Seite 625-634 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:53 year:2010 number:3 month:03 pages:625-634 https://dx.doi.org/10.1007/s11425-010-0041-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 53 2010 3 03 625-634 |
allfieldsSound |
10.1007/s11425-010-0041-7 doi (DE-627)SPR019129890 (SPR)s11425-010-0041-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Distortion control of conjugacies between quadratic polynomials 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. distortion (dpeaa)DE-He213 conjugacy (dpeaa)DE-He213 polynomial (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 53(2010), 3 vom: März, Seite 625-634 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:53 year:2010 number:3 month:03 pages:625-634 https://dx.doi.org/10.1007/s11425-010-0041-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 53 2010 3 03 625-634 |
language |
English |
source |
Enthalten in Science in China 53(2010), 3 vom: März, Seite 625-634 volume:53 year:2010 number:3 month:03 pages:625-634 |
sourceStr |
Enthalten in Science in China 53(2010), 3 vom: März, Seite 625-634 volume:53 year:2010 number:3 month:03 pages:625-634 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
distortion conjugacy polynomial |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Cui, GuiZhen @@aut@@ Tan, Lei @@aut@@ |
publishDateDaySort_date |
2010-03-01T00:00:00Z |
hierarchy_top_id |
325695059 |
dewey-sort |
3510 |
id |
SPR019129890 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019129890</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064834.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-010-0041-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019129890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-010-0041-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, GuiZhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distortion control of conjugacies between quadratic polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distortion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conjugacy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polynomial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">53(2010), 3 vom: März, Seite 625-634</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:625-634</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-010-0041-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="c">03</subfield><subfield code="h">625-634</subfield></datafield></record></collection>
|
author |
Cui, GuiZhen |
spellingShingle |
Cui, GuiZhen ddc 510 bkl 30.00 bkl 31.00 misc distortion misc conjugacy misc polynomial Distortion control of conjugacies between quadratic polynomials |
authorStr |
Cui, GuiZhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325695059 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics 520 - Astronomy & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2763 |
topic_title |
510 530 520 ASE 30.00 bkl 31.00 bkl Distortion control of conjugacies between quadratic polynomials distortion (dpeaa)DE-He213 conjugacy (dpeaa)DE-He213 polynomial (dpeaa)DE-He213 |
topic |
ddc 510 bkl 30.00 bkl 31.00 misc distortion misc conjugacy misc polynomial |
topic_unstemmed |
ddc 510 bkl 30.00 bkl 31.00 misc distortion misc conjugacy misc polynomial |
topic_browse |
ddc 510 bkl 30.00 bkl 31.00 misc distortion misc conjugacy misc polynomial |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
325695059 |
dewey-tens |
510 - Mathematics 530 - Physics 520 - Astronomy |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325695059 (DE-600)2038800-7 |
title |
Distortion control of conjugacies between quadratic polynomials |
ctrlnum |
(DE-627)SPR019129890 (SPR)s11425-010-0041-7-e |
title_full |
Distortion control of conjugacies between quadratic polynomials |
author_sort |
Cui, GuiZhen |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
625 |
author_browse |
Cui, GuiZhen Tan, Lei |
container_volume |
53 |
class |
510 530 520 ASE 30.00 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cui, GuiZhen |
doi_str_mv |
10.1007/s11425-010-0041-7 |
dewey-full |
510 530 520 |
author2-role |
verfasserin |
title_sort |
distortion control of conjugacies between quadratic polynomials |
title_auth |
Distortion control of conjugacies between quadratic polynomials |
abstract |
Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. |
abstractGer |
Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. |
abstract_unstemmed |
Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
3 |
title_short |
Distortion control of conjugacies between quadratic polynomials |
url |
https://dx.doi.org/10.1007/s11425-010-0041-7 |
remote_bool |
true |
author2 |
Tan, Lei |
author2Str |
Tan, Lei |
ppnlink |
325695059 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11425-010-0041-7 |
up_date |
2024-07-04T00:18:37.551Z |
_version_ |
1803605578933600256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019129890</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064834.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-010-0041-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019129890</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-010-0041-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, GuiZhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Distortion control of conjugacies between quadratic polynomials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We use a new type of distortion control of univalent functions to give an alternative proof of Douady-Hubbard’s ray-landing theorem for quadratic Misiurewicz polynomials. The univalent maps arise from Thurston’s iterated algorithm on perturbation of such polynomials.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">distortion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">conjugacy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polynomial</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">53(2010), 3 vom: März, Seite 625-634</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:3</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:625-634</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-010-0041-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2010</subfield><subfield code="e">3</subfield><subfield code="c">03</subfield><subfield code="h">625-634</subfield></datafield></record></collection>
|
score |
7.4007616 |