Some classes of complete permutation polynomials over $\mathbb{F}_q $
Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient a...
Ausführliche Beschreibung
Autor*in: |
Wu, GaoFei [verfasserIn] Li, Nian [verfasserIn] Helleseth, Tor [verfasserIn] Zhang, YuQing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 58(2015), 10 vom: 05. Jan., Seite 1-14 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2015 ; number:10 ; day:05 ; month:01 ; pages:1-14 |
Links: |
---|
DOI / URN: |
10.1007/s11425-014-4964-2 |
---|
Katalog-ID: |
SPR019140320 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019140320 | ||
003 | DE-627 | ||
005 | 20220111064857.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11425-014-4964-2 |2 doi | |
035 | |a (DE-627)SPR019140320 | ||
035 | |a (SPR)s11425-014-4964-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 530 |a 520 |q ASE |
084 | |a 30.00 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Wu, GaoFei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some classes of complete permutation polynomials over $\mathbb{F}_q $ |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. | ||
650 | 4 | |a finite field |7 (dpeaa)DE-He213 | |
650 | 4 | |a complete permutation polynomials |7 (dpeaa)DE-He213 | |
650 | 4 | |a Walsh transform |7 (dpeaa)DE-He213 | |
650 | 4 | |a Niho exponents |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dickson polynomials |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Nian |e verfasserin |4 aut | |
700 | 1 | |a Helleseth, Tor |e verfasserin |4 aut | |
700 | 1 | |a Zhang, YuQing |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 58(2015), 10 vom: 05. Jan., Seite 1-14 |w (DE-627)325695059 |w (DE-600)2038800-7 |x 1862-2763 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2015 |g number:10 |g day:05 |g month:01 |g pages:1-14 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11425-014-4964-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 30.00 |q ASE |
936 | b | k | |a 31.00 |q ASE |
951 | |a AR | ||
952 | |d 58 |j 2015 |e 10 |b 05 |c 01 |h 1-14 |
author_variant |
g w gw n l nl t h th y z yz |
---|---|
matchkey_str |
article:18622763:2015----::oelseocmltpruainoyoil |
hierarchy_sort_str |
2015 |
bklnumber |
30.00 31.00 |
publishDate |
2015 |
allfields |
10.1007/s11425-014-4964-2 doi (DE-627)SPR019140320 (SPR)s11425-014-4964-2-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Wu, GaoFei verfasserin aut Some classes of complete permutation polynomials over $\mathbb{F}_q $ 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. finite field (dpeaa)DE-He213 complete permutation polynomials (dpeaa)DE-He213 Walsh transform (dpeaa)DE-He213 Niho exponents (dpeaa)DE-He213 Dickson polynomials (dpeaa)DE-He213 Li, Nian verfasserin aut Helleseth, Tor verfasserin aut Zhang, YuQing verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 58(2015), 10 vom: 05. Jan., Seite 1-14 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:58 year:2015 number:10 day:05 month:01 pages:1-14 https://dx.doi.org/10.1007/s11425-014-4964-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 58 2015 10 05 01 1-14 |
spelling |
10.1007/s11425-014-4964-2 doi (DE-627)SPR019140320 (SPR)s11425-014-4964-2-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Wu, GaoFei verfasserin aut Some classes of complete permutation polynomials over $\mathbb{F}_q $ 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. finite field (dpeaa)DE-He213 complete permutation polynomials (dpeaa)DE-He213 Walsh transform (dpeaa)DE-He213 Niho exponents (dpeaa)DE-He213 Dickson polynomials (dpeaa)DE-He213 Li, Nian verfasserin aut Helleseth, Tor verfasserin aut Zhang, YuQing verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 58(2015), 10 vom: 05. Jan., Seite 1-14 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:58 year:2015 number:10 day:05 month:01 pages:1-14 https://dx.doi.org/10.1007/s11425-014-4964-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 58 2015 10 05 01 1-14 |
allfields_unstemmed |
10.1007/s11425-014-4964-2 doi (DE-627)SPR019140320 (SPR)s11425-014-4964-2-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Wu, GaoFei verfasserin aut Some classes of complete permutation polynomials over $\mathbb{F}_q $ 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. finite field (dpeaa)DE-He213 complete permutation polynomials (dpeaa)DE-He213 Walsh transform (dpeaa)DE-He213 Niho exponents (dpeaa)DE-He213 Dickson polynomials (dpeaa)DE-He213 Li, Nian verfasserin aut Helleseth, Tor verfasserin aut Zhang, YuQing verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 58(2015), 10 vom: 05. Jan., Seite 1-14 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:58 year:2015 number:10 day:05 month:01 pages:1-14 https://dx.doi.org/10.1007/s11425-014-4964-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 58 2015 10 05 01 1-14 |
allfieldsGer |
10.1007/s11425-014-4964-2 doi (DE-627)SPR019140320 (SPR)s11425-014-4964-2-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Wu, GaoFei verfasserin aut Some classes of complete permutation polynomials over $\mathbb{F}_q $ 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. finite field (dpeaa)DE-He213 complete permutation polynomials (dpeaa)DE-He213 Walsh transform (dpeaa)DE-He213 Niho exponents (dpeaa)DE-He213 Dickson polynomials (dpeaa)DE-He213 Li, Nian verfasserin aut Helleseth, Tor verfasserin aut Zhang, YuQing verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 58(2015), 10 vom: 05. Jan., Seite 1-14 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:58 year:2015 number:10 day:05 month:01 pages:1-14 https://dx.doi.org/10.1007/s11425-014-4964-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 58 2015 10 05 01 1-14 |
allfieldsSound |
10.1007/s11425-014-4964-2 doi (DE-627)SPR019140320 (SPR)s11425-014-4964-2-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Wu, GaoFei verfasserin aut Some classes of complete permutation polynomials over $\mathbb{F}_q $ 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. finite field (dpeaa)DE-He213 complete permutation polynomials (dpeaa)DE-He213 Walsh transform (dpeaa)DE-He213 Niho exponents (dpeaa)DE-He213 Dickson polynomials (dpeaa)DE-He213 Li, Nian verfasserin aut Helleseth, Tor verfasserin aut Zhang, YuQing verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 58(2015), 10 vom: 05. Jan., Seite 1-14 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:58 year:2015 number:10 day:05 month:01 pages:1-14 https://dx.doi.org/10.1007/s11425-014-4964-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 58 2015 10 05 01 1-14 |
language |
English |
source |
Enthalten in Science in China 58(2015), 10 vom: 05. Jan., Seite 1-14 volume:58 year:2015 number:10 day:05 month:01 pages:1-14 |
sourceStr |
Enthalten in Science in China 58(2015), 10 vom: 05. Jan., Seite 1-14 volume:58 year:2015 number:10 day:05 month:01 pages:1-14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
finite field complete permutation polynomials Walsh transform Niho exponents Dickson polynomials |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Wu, GaoFei @@aut@@ Li, Nian @@aut@@ Helleseth, Tor @@aut@@ Zhang, YuQing @@aut@@ |
publishDateDaySort_date |
2015-01-05T00:00:00Z |
hierarchy_top_id |
325695059 |
dewey-sort |
3510 |
id |
SPR019140320 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019140320</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-014-4964-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019140320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-014-4964-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, GaoFei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some classes of complete permutation polynomials over $\mathbb{F}_q $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complete permutation polynomials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Walsh transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Niho exponents</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dickson polynomials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Nian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helleseth, Tor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, YuQing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">58(2015), 10 vom: 05. Jan., Seite 1-14</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:10</subfield><subfield code="g">day:05</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-014-4964-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">10</subfield><subfield code="b">05</subfield><subfield code="c">01</subfield><subfield code="h">1-14</subfield></datafield></record></collection>
|
author |
Wu, GaoFei |
spellingShingle |
Wu, GaoFei ddc 510 bkl 30.00 bkl 31.00 misc finite field misc complete permutation polynomials misc Walsh transform misc Niho exponents misc Dickson polynomials Some classes of complete permutation polynomials over $\mathbb{F}_q $ |
authorStr |
Wu, GaoFei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325695059 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics 520 - Astronomy & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2763 |
topic_title |
510 530 520 ASE 30.00 bkl 31.00 bkl Some classes of complete permutation polynomials over $\mathbb{F}_q $ finite field (dpeaa)DE-He213 complete permutation polynomials (dpeaa)DE-He213 Walsh transform (dpeaa)DE-He213 Niho exponents (dpeaa)DE-He213 Dickson polynomials (dpeaa)DE-He213 |
topic |
ddc 510 bkl 30.00 bkl 31.00 misc finite field misc complete permutation polynomials misc Walsh transform misc Niho exponents misc Dickson polynomials |
topic_unstemmed |
ddc 510 bkl 30.00 bkl 31.00 misc finite field misc complete permutation polynomials misc Walsh transform misc Niho exponents misc Dickson polynomials |
topic_browse |
ddc 510 bkl 30.00 bkl 31.00 misc finite field misc complete permutation polynomials misc Walsh transform misc Niho exponents misc Dickson polynomials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
325695059 |
dewey-tens |
510 - Mathematics 530 - Physics 520 - Astronomy |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325695059 (DE-600)2038800-7 |
title |
Some classes of complete permutation polynomials over $\mathbb{F}_q $ |
ctrlnum |
(DE-627)SPR019140320 (SPR)s11425-014-4964-2-e |
title_full |
Some classes of complete permutation polynomials over $\mathbb{F}_q $ |
author_sort |
Wu, GaoFei |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Wu, GaoFei Li, Nian Helleseth, Tor Zhang, YuQing |
container_volume |
58 |
class |
510 530 520 ASE 30.00 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, GaoFei |
doi_str_mv |
10.1007/s11425-014-4964-2 |
dewey-full |
510 530 520 |
author2-role |
verfasserin |
title_sort |
some classes of complete permutation polynomials over $\mathbb{f}_q $ |
title_auth |
Some classes of complete permutation polynomials over $\mathbb{F}_q $ |
abstract |
Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. |
abstractGer |
Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. |
abstract_unstemmed |
Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
10 |
title_short |
Some classes of complete permutation polynomials over $\mathbb{F}_q $ |
url |
https://dx.doi.org/10.1007/s11425-014-4964-2 |
remote_bool |
true |
author2 |
Li, Nian Helleseth, Tor Zhang, YuQing |
author2Str |
Li, Nian Helleseth, Tor Zhang, YuQing |
ppnlink |
325695059 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11425-014-4964-2 |
up_date |
2024-07-04T00:20:35.223Z |
_version_ |
1803605702317441024 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019140320</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064857.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-014-4964-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019140320</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-014-4964-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, GaoFei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some classes of complete permutation polynomials over $\mathbb{F}_q $</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract By using a powerful criterion for permutation polynomials, we give several classes of complete permutation polynomials over finite fields. First, two classes of complete permutation monomials whose exponents are of Niho type are presented. Second, for any odd prime p, we give a sufficient and necessary condition for a−1xd to be a complete permutation polynomial over $\mathbb{F}_{p^{4k} } $, where \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$d = \frac{{p^{4k} - 1}}{{p^k - 1}} + 1$\end{document} and $a \in \mathbb{F}_{p^{4k} }^* $. Finally, we present a class of complete permutation multinomials, which is a generalization of recent work.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">complete permutation polynomials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Walsh transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Niho exponents</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dickson polynomials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Nian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Helleseth, Tor</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, YuQing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">58(2015), 10 vom: 05. Jan., Seite 1-14</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:10</subfield><subfield code="g">day:05</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-014-4964-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">10</subfield><subfield code="b">05</subfield><subfield code="c">01</subfield><subfield code="h">1-14</subfield></datafield></record></collection>
|
score |
7.4008226 |