Rational maps as Schwarzian primitives
Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d...
Ausführliche Beschreibung
Autor*in: |
Cui, GuiZhen [verfasserIn] Gao, Yan [verfasserIn] Rugh, Hans Henrik [verfasserIn] Tan, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 59(2016), 7 vom: 29. März, Seite 1267-1284 |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2016 ; number:7 ; day:29 ; month:03 ; pages:1267-1284 |
Links: |
---|
DOI / URN: |
10.1007/s11425-016-5140-7 |
---|
Katalog-ID: |
SPR019143370 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019143370 | ||
003 | DE-627 | ||
005 | 20220111064900.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11425-016-5140-7 |2 doi | |
035 | |a (DE-627)SPR019143370 | ||
035 | |a (SPR)s11425-016-5140-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 530 |a 520 |q ASE |
084 | |a 30.00 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Cui, GuiZhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Rational maps as Schwarzian primitives |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. | ||
650 | 4 | |a Schwarzian derivatives |7 (dpeaa)DE-He213 | |
650 | 4 | |a rational maps |7 (dpeaa)DE-He213 | |
650 | 4 | |a critical points |7 (dpeaa)DE-He213 | |
650 | 4 | |a meromorphic quadratic differentials |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gao, Yan |e verfasserin |4 aut | |
700 | 1 | |a Rugh, Hans Henrik |e verfasserin |4 aut | |
700 | 1 | |a Tan, Lei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 59(2016), 7 vom: 29. März, Seite 1267-1284 |w (DE-627)325695059 |w (DE-600)2038800-7 |x 1862-2763 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2016 |g number:7 |g day:29 |g month:03 |g pages:1267-1284 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11425-016-5140-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 30.00 |q ASE |
936 | b | k | |a 31.00 |q ASE |
951 | |a AR | ||
952 | |d 59 |j 2016 |e 7 |b 29 |c 03 |h 1267-1284 |
author_variant |
g c gc y g yg h h r hh hhr l t lt |
---|---|
matchkey_str |
article:18622763:2016----::ainlasscwrin |
hierarchy_sort_str |
2016 |
bklnumber |
30.00 31.00 |
publishDate |
2016 |
allfields |
10.1007/s11425-016-5140-7 doi (DE-627)SPR019143370 (SPR)s11425-016-5140-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Rational maps as Schwarzian primitives 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. Schwarzian derivatives (dpeaa)DE-He213 rational maps (dpeaa)DE-He213 critical points (dpeaa)DE-He213 meromorphic quadratic differentials (dpeaa)DE-He213 Gao, Yan verfasserin aut Rugh, Hans Henrik verfasserin aut Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 59(2016), 7 vom: 29. März, Seite 1267-1284 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 https://dx.doi.org/10.1007/s11425-016-5140-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 59 2016 7 29 03 1267-1284 |
spelling |
10.1007/s11425-016-5140-7 doi (DE-627)SPR019143370 (SPR)s11425-016-5140-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Rational maps as Schwarzian primitives 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. Schwarzian derivatives (dpeaa)DE-He213 rational maps (dpeaa)DE-He213 critical points (dpeaa)DE-He213 meromorphic quadratic differentials (dpeaa)DE-He213 Gao, Yan verfasserin aut Rugh, Hans Henrik verfasserin aut Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 59(2016), 7 vom: 29. März, Seite 1267-1284 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 https://dx.doi.org/10.1007/s11425-016-5140-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 59 2016 7 29 03 1267-1284 |
allfields_unstemmed |
10.1007/s11425-016-5140-7 doi (DE-627)SPR019143370 (SPR)s11425-016-5140-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Rational maps as Schwarzian primitives 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. Schwarzian derivatives (dpeaa)DE-He213 rational maps (dpeaa)DE-He213 critical points (dpeaa)DE-He213 meromorphic quadratic differentials (dpeaa)DE-He213 Gao, Yan verfasserin aut Rugh, Hans Henrik verfasserin aut Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 59(2016), 7 vom: 29. März, Seite 1267-1284 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 https://dx.doi.org/10.1007/s11425-016-5140-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 59 2016 7 29 03 1267-1284 |
allfieldsGer |
10.1007/s11425-016-5140-7 doi (DE-627)SPR019143370 (SPR)s11425-016-5140-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Rational maps as Schwarzian primitives 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. Schwarzian derivatives (dpeaa)DE-He213 rational maps (dpeaa)DE-He213 critical points (dpeaa)DE-He213 meromorphic quadratic differentials (dpeaa)DE-He213 Gao, Yan verfasserin aut Rugh, Hans Henrik verfasserin aut Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 59(2016), 7 vom: 29. März, Seite 1267-1284 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 https://dx.doi.org/10.1007/s11425-016-5140-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 59 2016 7 29 03 1267-1284 |
allfieldsSound |
10.1007/s11425-016-5140-7 doi (DE-627)SPR019143370 (SPR)s11425-016-5140-7-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, GuiZhen verfasserin aut Rational maps as Schwarzian primitives 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. Schwarzian derivatives (dpeaa)DE-He213 rational maps (dpeaa)DE-He213 critical points (dpeaa)DE-He213 meromorphic quadratic differentials (dpeaa)DE-He213 Gao, Yan verfasserin aut Rugh, Hans Henrik verfasserin aut Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 59(2016), 7 vom: 29. März, Seite 1267-1284 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 https://dx.doi.org/10.1007/s11425-016-5140-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 59 2016 7 29 03 1267-1284 |
language |
English |
source |
Enthalten in Science in China 59(2016), 7 vom: 29. März, Seite 1267-1284 volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 |
sourceStr |
Enthalten in Science in China 59(2016), 7 vom: 29. März, Seite 1267-1284 volume:59 year:2016 number:7 day:29 month:03 pages:1267-1284 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Schwarzian derivatives rational maps critical points meromorphic quadratic differentials |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Cui, GuiZhen @@aut@@ Gao, Yan @@aut@@ Rugh, Hans Henrik @@aut@@ Tan, Lei @@aut@@ |
publishDateDaySort_date |
2016-03-29T00:00:00Z |
hierarchy_top_id |
325695059 |
dewey-sort |
3510 |
id |
SPR019143370 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019143370</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064900.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-016-5140-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019143370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-016-5140-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, GuiZhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rational maps as Schwarzian primitives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwarzian derivatives</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational maps</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">critical points</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meromorphic quadratic differentials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rugh, Hans Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">59(2016), 7 vom: 29. März, Seite 1267-1284</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">day:29</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1267-1284</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-016-5140-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="b">29</subfield><subfield code="c">03</subfield><subfield code="h">1267-1284</subfield></datafield></record></collection>
|
author |
Cui, GuiZhen |
spellingShingle |
Cui, GuiZhen ddc 510 bkl 30.00 bkl 31.00 misc Schwarzian derivatives misc rational maps misc critical points misc meromorphic quadratic differentials Rational maps as Schwarzian primitives |
authorStr |
Cui, GuiZhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325695059 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics 520 - Astronomy & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2763 |
topic_title |
510 530 520 ASE 30.00 bkl 31.00 bkl Rational maps as Schwarzian primitives Schwarzian derivatives (dpeaa)DE-He213 rational maps (dpeaa)DE-He213 critical points (dpeaa)DE-He213 meromorphic quadratic differentials (dpeaa)DE-He213 |
topic |
ddc 510 bkl 30.00 bkl 31.00 misc Schwarzian derivatives misc rational maps misc critical points misc meromorphic quadratic differentials |
topic_unstemmed |
ddc 510 bkl 30.00 bkl 31.00 misc Schwarzian derivatives misc rational maps misc critical points misc meromorphic quadratic differentials |
topic_browse |
ddc 510 bkl 30.00 bkl 31.00 misc Schwarzian derivatives misc rational maps misc critical points misc meromorphic quadratic differentials |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
325695059 |
dewey-tens |
510 - Mathematics 530 - Physics 520 - Astronomy |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325695059 (DE-600)2038800-7 |
title |
Rational maps as Schwarzian primitives |
ctrlnum |
(DE-627)SPR019143370 (SPR)s11425-016-5140-7-e |
title_full |
Rational maps as Schwarzian primitives |
author_sort |
Cui, GuiZhen |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
1267 |
author_browse |
Cui, GuiZhen Gao, Yan Rugh, Hans Henrik Tan, Lei |
container_volume |
59 |
class |
510 530 520 ASE 30.00 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cui, GuiZhen |
doi_str_mv |
10.1007/s11425-016-5140-7 |
dewey-full |
510 530 520 |
author2-role |
verfasserin |
title_sort |
rational maps as schwarzian primitives |
title_auth |
Rational maps as Schwarzian primitives |
abstract |
Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. |
abstractGer |
Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. |
abstract_unstemmed |
Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
7 |
title_short |
Rational maps as Schwarzian primitives |
url |
https://dx.doi.org/10.1007/s11425-016-5140-7 |
remote_bool |
true |
author2 |
Gao, Yan Rugh, Hans Henrik Tan, Lei |
author2Str |
Gao, Yan Rugh, Hans Henrik Tan, Lei |
ppnlink |
325695059 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11425-016-5140-7 |
up_date |
2024-07-04T00:21:10.267Z |
_version_ |
1803605739065835520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019143370</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064900.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-016-5140-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019143370</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-016-5140-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, GuiZhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Rational maps as Schwarzian primitives</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We examine when a meromorphic quadratic differential ϕ with prescribed poles is the Schwarzian derivative of a rational map. We give a necessary and sufficient condition: In the Laurent series of ϕ around each pole c, the most singular term should take the form (1 − d2)/(2(z − c)2), where d is an integer, and then a certain determinant in the next d coefficients should vanish. This condition can be optimized by neglecting some information on one of the poles (i.e., by only requiring it to be a double pole). The case d = 2 was treated by Eremenko (2012). We show that a geometric interpretation of our condition is that the complex projective structure induced by ϕ outside the poles has a trivial holonomy group. This statement was suggested to us by Thurston in a private communication. Our work is related to the problem of finding a rational map f with a prescribed set of critical points, since the critical points of f are precisely the poles of its Schwarzian derivative. Finally, we study the pole-dependency of these Schwarzian derivatives. We show that, in the cubic case with simple critical points, an analytic dependency fails precisely when the poles are displaced at the vertices of a regular ideal tetrahedron of the hyperbolic 3-ball.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Schwarzian derivatives</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational maps</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">critical points</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">meromorphic quadratic differentials</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Yan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rugh, Hans Henrik</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">59(2016), 7 vom: 29. März, Seite 1267-1284</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:7</subfield><subfield code="g">day:29</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1267-1284</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-016-5140-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2016</subfield><subfield code="e">7</subfield><subfield code="b">29</subfield><subfield code="c">03</subfield><subfield code="h">1267-1284</subfield></datafield></record></collection>
|
score |
7.4019384 |