Hyperbolic-parabolic deformations of rational maps
Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges unifor...
Ausführliche Beschreibung
Autor*in: |
Cui, Guizhen [verfasserIn] Tan, Lei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Asheville, NC : Science in China Press, 1995, 61(2018), 12 vom: 22. Nov., Seite 2157-2220 |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2018 ; number:12 ; day:22 ; month:11 ; pages:2157-2220 |
Links: |
---|
DOI / URN: |
10.1007/s11425-018-9426-4 |
---|
Katalog-ID: |
SPR019145705 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019145705 | ||
003 | DE-627 | ||
005 | 20220111064909.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11425-018-9426-4 |2 doi | |
035 | |a (DE-627)SPR019145705 | ||
035 | |a (SPR)s11425-018-9426-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 530 |a 520 |q ASE |
084 | |a 30.00 |2 bkl | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Cui, Guizhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hyperbolic-parabolic deformations of rational maps |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. | ||
650 | 4 | |a rational map |7 (dpeaa)DE-He213 | |
650 | 4 | |a geometrically finite |7 (dpeaa)DE-He213 | |
650 | 4 | |a hyperbolic |7 (dpeaa)DE-He213 | |
650 | 4 | |a parabolic |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tan, Lei |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Asheville, NC : Science in China Press, 1995 |g 61(2018), 12 vom: 22. Nov., Seite 2157-2220 |w (DE-627)325695059 |w (DE-600)2038800-7 |x 1862-2763 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2018 |g number:12 |g day:22 |g month:11 |g pages:2157-2220 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11425-018-9426-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 30.00 |q ASE |
936 | b | k | |a 31.00 |q ASE |
951 | |a AR | ||
952 | |d 61 |j 2018 |e 12 |b 22 |c 11 |h 2157-2220 |
author_variant |
g c gc l t lt |
---|---|
matchkey_str |
article:18622763:2018----::yeblcaaoidfraino |
hierarchy_sort_str |
2018 |
bklnumber |
30.00 31.00 |
publishDate |
2018 |
allfields |
10.1007/s11425-018-9426-4 doi (DE-627)SPR019145705 (SPR)s11425-018-9426-4-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, Guizhen verfasserin aut Hyperbolic-parabolic deformations of rational maps 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. rational map (dpeaa)DE-He213 geometrically finite (dpeaa)DE-He213 hyperbolic (dpeaa)DE-He213 parabolic (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 61(2018), 12 vom: 22. Nov., Seite 2157-2220 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 https://dx.doi.org/10.1007/s11425-018-9426-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 61 2018 12 22 11 2157-2220 |
spelling |
10.1007/s11425-018-9426-4 doi (DE-627)SPR019145705 (SPR)s11425-018-9426-4-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, Guizhen verfasserin aut Hyperbolic-parabolic deformations of rational maps 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. rational map (dpeaa)DE-He213 geometrically finite (dpeaa)DE-He213 hyperbolic (dpeaa)DE-He213 parabolic (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 61(2018), 12 vom: 22. Nov., Seite 2157-2220 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 https://dx.doi.org/10.1007/s11425-018-9426-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 61 2018 12 22 11 2157-2220 |
allfields_unstemmed |
10.1007/s11425-018-9426-4 doi (DE-627)SPR019145705 (SPR)s11425-018-9426-4-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, Guizhen verfasserin aut Hyperbolic-parabolic deformations of rational maps 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. rational map (dpeaa)DE-He213 geometrically finite (dpeaa)DE-He213 hyperbolic (dpeaa)DE-He213 parabolic (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 61(2018), 12 vom: 22. Nov., Seite 2157-2220 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 https://dx.doi.org/10.1007/s11425-018-9426-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 61 2018 12 22 11 2157-2220 |
allfieldsGer |
10.1007/s11425-018-9426-4 doi (DE-627)SPR019145705 (SPR)s11425-018-9426-4-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, Guizhen verfasserin aut Hyperbolic-parabolic deformations of rational maps 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. rational map (dpeaa)DE-He213 geometrically finite (dpeaa)DE-He213 hyperbolic (dpeaa)DE-He213 parabolic (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 61(2018), 12 vom: 22. Nov., Seite 2157-2220 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 https://dx.doi.org/10.1007/s11425-018-9426-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 61 2018 12 22 11 2157-2220 |
allfieldsSound |
10.1007/s11425-018-9426-4 doi (DE-627)SPR019145705 (SPR)s11425-018-9426-4-e DE-627 ger DE-627 rakwb eng 510 530 520 ASE 30.00 bkl 31.00 bkl Cui, Guizhen verfasserin aut Hyperbolic-parabolic deformations of rational maps 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. rational map (dpeaa)DE-He213 geometrically finite (dpeaa)DE-He213 hyperbolic (dpeaa)DE-He213 parabolic (dpeaa)DE-He213 Tan, Lei verfasserin aut Enthalten in Science in China Asheville, NC : Science in China Press, 1995 61(2018), 12 vom: 22. Nov., Seite 2157-2220 (DE-627)325695059 (DE-600)2038800-7 1862-2763 nnns volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 https://dx.doi.org/10.1007/s11425-018-9426-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 30.00 ASE 31.00 ASE AR 61 2018 12 22 11 2157-2220 |
language |
English |
source |
Enthalten in Science in China 61(2018), 12 vom: 22. Nov., Seite 2157-2220 volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 |
sourceStr |
Enthalten in Science in China 61(2018), 12 vom: 22. Nov., Seite 2157-2220 volume:61 year:2018 number:12 day:22 month:11 pages:2157-2220 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
rational map geometrically finite hyperbolic parabolic |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Cui, Guizhen @@aut@@ Tan, Lei @@aut@@ |
publishDateDaySort_date |
2018-11-22T00:00:00Z |
hierarchy_top_id |
325695059 |
dewey-sort |
3510 |
id |
SPR019145705 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019145705</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-018-9426-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019145705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-018-9426-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic-parabolic deformations of rational maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational map</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometrically finite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperbolic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parabolic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">61(2018), 12 vom: 22. Nov., Seite 2157-2220</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:22</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2157-2220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-018-9426-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">22</subfield><subfield code="c">11</subfield><subfield code="h">2157-2220</subfield></datafield></record></collection>
|
author |
Cui, Guizhen |
spellingShingle |
Cui, Guizhen ddc 510 bkl 30.00 bkl 31.00 misc rational map misc geometrically finite misc hyperbolic misc parabolic Hyperbolic-parabolic deformations of rational maps |
authorStr |
Cui, Guizhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)325695059 |
format |
electronic Article |
dewey-ones |
510 - Mathematics 530 - Physics 520 - Astronomy & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2763 |
topic_title |
510 530 520 ASE 30.00 bkl 31.00 bkl Hyperbolic-parabolic deformations of rational maps rational map (dpeaa)DE-He213 geometrically finite (dpeaa)DE-He213 hyperbolic (dpeaa)DE-He213 parabolic (dpeaa)DE-He213 |
topic |
ddc 510 bkl 30.00 bkl 31.00 misc rational map misc geometrically finite misc hyperbolic misc parabolic |
topic_unstemmed |
ddc 510 bkl 30.00 bkl 31.00 misc rational map misc geometrically finite misc hyperbolic misc parabolic |
topic_browse |
ddc 510 bkl 30.00 bkl 31.00 misc rational map misc geometrically finite misc hyperbolic misc parabolic |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
325695059 |
dewey-tens |
510 - Mathematics 530 - Physics 520 - Astronomy |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)325695059 (DE-600)2038800-7 |
title |
Hyperbolic-parabolic deformations of rational maps |
ctrlnum |
(DE-627)SPR019145705 (SPR)s11425-018-9426-4-e |
title_full |
Hyperbolic-parabolic deformations of rational maps |
author_sort |
Cui, Guizhen |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
2157 |
author_browse |
Cui, Guizhen Tan, Lei |
container_volume |
61 |
class |
510 530 520 ASE 30.00 bkl 31.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Cui, Guizhen |
doi_str_mv |
10.1007/s11425-018-9426-4 |
dewey-full |
510 530 520 |
author2-role |
verfasserin |
title_sort |
hyperbolic-parabolic deformations of rational maps |
title_auth |
Hyperbolic-parabolic deformations of rational maps |
abstract |
Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. |
abstractGer |
Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. |
abstract_unstemmed |
Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-MAT SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
12 |
title_short |
Hyperbolic-parabolic deformations of rational maps |
url |
https://dx.doi.org/10.1007/s11425-018-9426-4 |
remote_bool |
true |
author2 |
Tan, Lei |
author2Str |
Tan, Lei |
ppnlink |
325695059 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11425-018-9426-4 |
up_date |
2024-07-04T00:21:39.280Z |
_version_ |
1803605769488171008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019145705</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111064909.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11425-018-9426-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019145705</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11425-018-9426-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cui, Guizhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic-parabolic deformations of rational maps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We develop a Thurston-like theory to characterize geometrically finite rational maps, and then apply it to study pinching and plumbing deformations of rational maps. We show that under certain conditions the pinching path converges uniformly and the quasiconformal conjugacy converges uniformly to a semi-conjugacy from the original map to the limit. Conversely, every geometrically finite rational map with parabolic points is the landing point of a pinching path for any prescribed plumbing combinatorics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">rational map</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geometrically finite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyperbolic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parabolic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tan, Lei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Asheville, NC : Science in China Press, 1995</subfield><subfield code="g">61(2018), 12 vom: 22. Nov., Seite 2157-2220</subfield><subfield code="w">(DE-627)325695059</subfield><subfield code="w">(DE-600)2038800-7</subfield><subfield code="x">1862-2763</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:12</subfield><subfield code="g">day:22</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2157-2220</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11425-018-9426-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2018</subfield><subfield code="e">12</subfield><subfield code="b">22</subfield><subfield code="c">11</subfield><subfield code="h">2157-2220</subfield></datafield></record></collection>
|
score |
7.40108 |