Reflection full waveform inversion
Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the applicatio...
Ausführliche Beschreibung
Autor*in: |
Yao, Gang [verfasserIn] Wu, Di [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Reflection full-waveform inversion |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 60(2017), 10 vom: 18. Sept., Seite 1783-1794 |
---|---|
Übergeordnetes Werk: |
volume:60 ; year:2017 ; number:10 ; day:18 ; month:09 ; pages:1783-1794 |
Links: |
---|
DOI / URN: |
10.1007/s11430-016-9091-9 |
---|
Katalog-ID: |
SPR019248237 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019248237 | ||
003 | DE-627 | ||
005 | 20220111065311.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11430-016-9091-9 |2 doi | |
035 | |a (DE-627)SPR019248237 | ||
035 | |a (SPR)s11430-016-9091-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q ASE |
084 | |a 38.00 |2 bkl | ||
100 | 1 | |a Yao, Gang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reflection full waveform inversion |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. | ||
650 | 4 | |a Full-waveform inversion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reflection full-waveform inversion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Least-squares reverse-time migration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Tomographic gradient |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reflectivity gradient |7 (dpeaa)DE-He213 | |
650 | 4 | |a Deconvolution imaging condition |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wu, Di |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 60(2017), 10 vom: 18. Sept., Seite 1783-1794 |w (DE-627)385614748 |w (DE-600)2142896-7 |x 1862-2801 |7 nnns |
773 | 1 | 8 | |g volume:60 |g year:2017 |g number:10 |g day:18 |g month:09 |g pages:1783-1794 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11430-016-9091-9 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 38.00 |q ASE |
951 | |a AR | ||
952 | |d 60 |j 2017 |e 10 |b 18 |c 09 |h 1783-1794 |
author_variant |
g y gy d w dw |
---|---|
matchkey_str |
article:18622801:2017----::elcinulaeo |
hierarchy_sort_str |
2017 |
bklnumber |
38.00 |
publishDate |
2017 |
allfields |
10.1007/s11430-016-9091-9 doi (DE-627)SPR019248237 (SPR)s11430-016-9091-9-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Yao, Gang verfasserin aut Reflection full waveform inversion 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. Full-waveform inversion (dpeaa)DE-He213 Reflection full-waveform inversion (dpeaa)DE-He213 Least-squares reverse-time migration (dpeaa)DE-He213 Tomographic gradient (dpeaa)DE-He213 Reflectivity gradient (dpeaa)DE-He213 Deconvolution imaging condition (dpeaa)DE-He213 Wu, Di verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 60(2017), 10 vom: 18. Sept., Seite 1783-1794 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 https://dx.doi.org/10.1007/s11430-016-9091-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 60 2017 10 18 09 1783-1794 |
spelling |
10.1007/s11430-016-9091-9 doi (DE-627)SPR019248237 (SPR)s11430-016-9091-9-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Yao, Gang verfasserin aut Reflection full waveform inversion 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. Full-waveform inversion (dpeaa)DE-He213 Reflection full-waveform inversion (dpeaa)DE-He213 Least-squares reverse-time migration (dpeaa)DE-He213 Tomographic gradient (dpeaa)DE-He213 Reflectivity gradient (dpeaa)DE-He213 Deconvolution imaging condition (dpeaa)DE-He213 Wu, Di verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 60(2017), 10 vom: 18. Sept., Seite 1783-1794 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 https://dx.doi.org/10.1007/s11430-016-9091-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 60 2017 10 18 09 1783-1794 |
allfields_unstemmed |
10.1007/s11430-016-9091-9 doi (DE-627)SPR019248237 (SPR)s11430-016-9091-9-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Yao, Gang verfasserin aut Reflection full waveform inversion 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. Full-waveform inversion (dpeaa)DE-He213 Reflection full-waveform inversion (dpeaa)DE-He213 Least-squares reverse-time migration (dpeaa)DE-He213 Tomographic gradient (dpeaa)DE-He213 Reflectivity gradient (dpeaa)DE-He213 Deconvolution imaging condition (dpeaa)DE-He213 Wu, Di verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 60(2017), 10 vom: 18. Sept., Seite 1783-1794 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 https://dx.doi.org/10.1007/s11430-016-9091-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 60 2017 10 18 09 1783-1794 |
allfieldsGer |
10.1007/s11430-016-9091-9 doi (DE-627)SPR019248237 (SPR)s11430-016-9091-9-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Yao, Gang verfasserin aut Reflection full waveform inversion 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. Full-waveform inversion (dpeaa)DE-He213 Reflection full-waveform inversion (dpeaa)DE-He213 Least-squares reverse-time migration (dpeaa)DE-He213 Tomographic gradient (dpeaa)DE-He213 Reflectivity gradient (dpeaa)DE-He213 Deconvolution imaging condition (dpeaa)DE-He213 Wu, Di verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 60(2017), 10 vom: 18. Sept., Seite 1783-1794 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 https://dx.doi.org/10.1007/s11430-016-9091-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 60 2017 10 18 09 1783-1794 |
allfieldsSound |
10.1007/s11430-016-9091-9 doi (DE-627)SPR019248237 (SPR)s11430-016-9091-9-e DE-627 ger DE-627 rakwb eng 550 ASE 38.00 bkl Yao, Gang verfasserin aut Reflection full waveform inversion 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. Full-waveform inversion (dpeaa)DE-He213 Reflection full-waveform inversion (dpeaa)DE-He213 Least-squares reverse-time migration (dpeaa)DE-He213 Tomographic gradient (dpeaa)DE-He213 Reflectivity gradient (dpeaa)DE-He213 Deconvolution imaging condition (dpeaa)DE-He213 Wu, Di verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 60(2017), 10 vom: 18. Sept., Seite 1783-1794 (DE-627)385614748 (DE-600)2142896-7 1862-2801 nnns volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 https://dx.doi.org/10.1007/s11430-016-9091-9 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 38.00 ASE AR 60 2017 10 18 09 1783-1794 |
language |
English |
source |
Enthalten in Science in China 60(2017), 10 vom: 18. Sept., Seite 1783-1794 volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 |
sourceStr |
Enthalten in Science in China 60(2017), 10 vom: 18. Sept., Seite 1783-1794 volume:60 year:2017 number:10 day:18 month:09 pages:1783-1794 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Full-waveform inversion Reflection full-waveform inversion Least-squares reverse-time migration Tomographic gradient Reflectivity gradient Deconvolution imaging condition |
dewey-raw |
550 |
isfreeaccess_bool |
true |
container_title |
Science in China |
authorswithroles_txt_mv |
Yao, Gang @@aut@@ Wu, Di @@aut@@ |
publishDateDaySort_date |
2017-09-18T00:00:00Z |
hierarchy_top_id |
385614748 |
dewey-sort |
3550 |
id |
SPR019248237 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019248237</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065311.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-016-9091-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019248237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-016-9091-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yao, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reflection full waveform inversion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Full-waveform inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflection full-waveform inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Least-squares reverse-time migration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomographic gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflectivity gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deconvolution imaging condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Di</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">60(2017), 10 vom: 18. Sept., Seite 1783-1794</subfield><subfield code="w">(DE-627)385614748</subfield><subfield code="w">(DE-600)2142896-7</subfield><subfield code="x">1862-2801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1783-1794</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-016-9091-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">1783-1794</subfield></datafield></record></collection>
|
author |
Yao, Gang |
spellingShingle |
Yao, Gang ddc 550 bkl 38.00 misc Full-waveform inversion misc Reflection full-waveform inversion misc Least-squares reverse-time migration misc Tomographic gradient misc Reflectivity gradient misc Deconvolution imaging condition Reflection full waveform inversion |
authorStr |
Yao, Gang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614748 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2801 |
topic_title |
550 ASE 38.00 bkl Reflection full waveform inversion Full-waveform inversion (dpeaa)DE-He213 Reflection full-waveform inversion (dpeaa)DE-He213 Least-squares reverse-time migration (dpeaa)DE-He213 Tomographic gradient (dpeaa)DE-He213 Reflectivity gradient (dpeaa)DE-He213 Deconvolution imaging condition (dpeaa)DE-He213 |
topic |
ddc 550 bkl 38.00 misc Full-waveform inversion misc Reflection full-waveform inversion misc Least-squares reverse-time migration misc Tomographic gradient misc Reflectivity gradient misc Deconvolution imaging condition |
topic_unstemmed |
ddc 550 bkl 38.00 misc Full-waveform inversion misc Reflection full-waveform inversion misc Least-squares reverse-time migration misc Tomographic gradient misc Reflectivity gradient misc Deconvolution imaging condition |
topic_browse |
ddc 550 bkl 38.00 misc Full-waveform inversion misc Reflection full-waveform inversion misc Least-squares reverse-time migration misc Tomographic gradient misc Reflectivity gradient misc Deconvolution imaging condition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614748 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)385614748 (DE-600)2142896-7 |
title |
Reflection full waveform inversion |
ctrlnum |
(DE-627)SPR019248237 (SPR)s11430-016-9091-9-e |
title_full |
Reflection full waveform inversion |
author_sort |
Yao, Gang |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1783 |
author_browse |
Yao, Gang Wu, Di |
container_volume |
60 |
class |
550 ASE 38.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Yao, Gang |
doi_str_mv |
10.1007/s11430-016-9091-9 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
reflection full waveform inversion |
title_auth |
Reflection full waveform inversion |
abstract |
Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. |
abstractGer |
Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. |
abstract_unstemmed |
Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-GGO SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
10 |
title_short |
Reflection full waveform inversion |
url |
https://dx.doi.org/10.1007/s11430-016-9091-9 |
remote_bool |
true |
author2 |
Wu, Di |
author2Str |
Wu, Di |
ppnlink |
385614748 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11430-016-9091-9 |
up_date |
2024-07-04T00:48:36.406Z |
_version_ |
1803607465168732160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019248237</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065311.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11430-016-9091-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019248237</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11430-016-9091-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">38.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yao, Gang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reflection full waveform inversion</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Because of the combination of optimization algorithms and full wave equations, full-waveform inversion (FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data. Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Full-waveform inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflection full-waveform inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Least-squares reverse-time migration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tomographic gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reflectivity gradient</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deconvolution imaging condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Di</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">60(2017), 10 vom: 18. Sept., Seite 1783-1794</subfield><subfield code="w">(DE-627)385614748</subfield><subfield code="w">(DE-600)2142896-7</subfield><subfield code="x">1862-2801</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:60</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:10</subfield><subfield code="g">day:18</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1783-1794</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11430-016-9091-9</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">38.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">60</subfield><subfield code="j">2017</subfield><subfield code="e">10</subfield><subfield code="b">18</subfield><subfield code="c">09</subfield><subfield code="h">1783-1794</subfield></datafield></record></collection>
|
score |
7.402936 |