Effects of Martian crustal magnetic field on its ionosphere
Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the elec...
Ausführliche Beschreibung
Autor*in: |
Zou, Hong [verfasserIn] Chen, HongFei [verfasserIn] Yu, Ning [verfasserIn] Shi, WeiHong [verfasserIn] Yu, XiangQian [verfasserIn] Zou, JiQing [verfasserIn] Zhong, WeiYing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 53(2010), 6 vom: Juni, Seite 1717-1724 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2010 ; number:6 ; month:06 ; pages:1717-1724 |
Links: |
---|
DOI / URN: |
10.1007/s11431-010-3118-1 |
---|
Katalog-ID: |
SPR019265921 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019265921 | ||
003 | DE-627 | ||
005 | 20220111065353.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11431-010-3118-1 |2 doi | |
035 | |a (DE-627)SPR019265921 | ||
035 | |a (SPR)s11431-010-3118-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
082 | 0 | 4 | |a 600 |q ASE |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Zou, Hong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of Martian crustal magnetic field on its ionosphere |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. | ||
650 | 4 | |a Mars exploration |7 (dpeaa)DE-He213 | |
650 | 4 | |a Martian crustal megnetic field |7 (dpeaa)DE-He213 | |
650 | 4 | |a Martian ionosphere |7 (dpeaa)DE-He213 | |
650 | 4 | |a energetic particles detection |7 (dpeaa)DE-He213 | |
650 | 4 | |a plasma wave detection |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, HongFei |e verfasserin |4 aut | |
700 | 1 | |a Yu, Ning |e verfasserin |4 aut | |
700 | 1 | |a Shi, WeiHong |e verfasserin |4 aut | |
700 | 1 | |a Yu, XiangQian |e verfasserin |4 aut | |
700 | 1 | |a Zou, JiQing |e verfasserin |4 aut | |
700 | 1 | |a Zhong, WeiYing |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 53(2010), 6 vom: Juni, Seite 1717-1724 |w (DE-627)385614756 |w (DE-600)2142897-9 |x 1862-281X |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2010 |g number:6 |g month:06 |g pages:1717-1724 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11431-010-3118-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 50.00 |q ASE |
951 | |a AR | ||
952 | |d 53 |j 2010 |e 6 |c 06 |h 1717-1724 |
author_variant |
h z hz h c hc n y ny w s ws x y xy j z jz w z wz |
---|---|
matchkey_str |
article:1862281X:2010----::fetomrinrsamgeifed |
hierarchy_sort_str |
2010 |
bklnumber |
50.00 |
publishDate |
2010 |
allfields |
10.1007/s11431-010-3118-1 doi (DE-627)SPR019265921 (SPR)s11431-010-3118-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Zou, Hong verfasserin aut Effects of Martian crustal magnetic field on its ionosphere 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. Mars exploration (dpeaa)DE-He213 Martian crustal megnetic field (dpeaa)DE-He213 Martian ionosphere (dpeaa)DE-He213 energetic particles detection (dpeaa)DE-He213 plasma wave detection (dpeaa)DE-He213 Chen, HongFei verfasserin aut Yu, Ning verfasserin aut Shi, WeiHong verfasserin aut Yu, XiangQian verfasserin aut Zou, JiQing verfasserin aut Zhong, WeiYing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 53(2010), 6 vom: Juni, Seite 1717-1724 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:53 year:2010 number:6 month:06 pages:1717-1724 https://dx.doi.org/10.1007/s11431-010-3118-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 53 2010 6 06 1717-1724 |
spelling |
10.1007/s11431-010-3118-1 doi (DE-627)SPR019265921 (SPR)s11431-010-3118-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Zou, Hong verfasserin aut Effects of Martian crustal magnetic field on its ionosphere 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. Mars exploration (dpeaa)DE-He213 Martian crustal megnetic field (dpeaa)DE-He213 Martian ionosphere (dpeaa)DE-He213 energetic particles detection (dpeaa)DE-He213 plasma wave detection (dpeaa)DE-He213 Chen, HongFei verfasserin aut Yu, Ning verfasserin aut Shi, WeiHong verfasserin aut Yu, XiangQian verfasserin aut Zou, JiQing verfasserin aut Zhong, WeiYing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 53(2010), 6 vom: Juni, Seite 1717-1724 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:53 year:2010 number:6 month:06 pages:1717-1724 https://dx.doi.org/10.1007/s11431-010-3118-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 53 2010 6 06 1717-1724 |
allfields_unstemmed |
10.1007/s11431-010-3118-1 doi (DE-627)SPR019265921 (SPR)s11431-010-3118-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Zou, Hong verfasserin aut Effects of Martian crustal magnetic field on its ionosphere 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. Mars exploration (dpeaa)DE-He213 Martian crustal megnetic field (dpeaa)DE-He213 Martian ionosphere (dpeaa)DE-He213 energetic particles detection (dpeaa)DE-He213 plasma wave detection (dpeaa)DE-He213 Chen, HongFei verfasserin aut Yu, Ning verfasserin aut Shi, WeiHong verfasserin aut Yu, XiangQian verfasserin aut Zou, JiQing verfasserin aut Zhong, WeiYing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 53(2010), 6 vom: Juni, Seite 1717-1724 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:53 year:2010 number:6 month:06 pages:1717-1724 https://dx.doi.org/10.1007/s11431-010-3118-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 53 2010 6 06 1717-1724 |
allfieldsGer |
10.1007/s11431-010-3118-1 doi (DE-627)SPR019265921 (SPR)s11431-010-3118-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Zou, Hong verfasserin aut Effects of Martian crustal magnetic field on its ionosphere 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. Mars exploration (dpeaa)DE-He213 Martian crustal megnetic field (dpeaa)DE-He213 Martian ionosphere (dpeaa)DE-He213 energetic particles detection (dpeaa)DE-He213 plasma wave detection (dpeaa)DE-He213 Chen, HongFei verfasserin aut Yu, Ning verfasserin aut Shi, WeiHong verfasserin aut Yu, XiangQian verfasserin aut Zou, JiQing verfasserin aut Zhong, WeiYing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 53(2010), 6 vom: Juni, Seite 1717-1724 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:53 year:2010 number:6 month:06 pages:1717-1724 https://dx.doi.org/10.1007/s11431-010-3118-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 53 2010 6 06 1717-1724 |
allfieldsSound |
10.1007/s11431-010-3118-1 doi (DE-627)SPR019265921 (SPR)s11431-010-3118-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Zou, Hong verfasserin aut Effects of Martian crustal magnetic field on its ionosphere 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. Mars exploration (dpeaa)DE-He213 Martian crustal megnetic field (dpeaa)DE-He213 Martian ionosphere (dpeaa)DE-He213 energetic particles detection (dpeaa)DE-He213 plasma wave detection (dpeaa)DE-He213 Chen, HongFei verfasserin aut Yu, Ning verfasserin aut Shi, WeiHong verfasserin aut Yu, XiangQian verfasserin aut Zou, JiQing verfasserin aut Zhong, WeiYing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 53(2010), 6 vom: Juni, Seite 1717-1724 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:53 year:2010 number:6 month:06 pages:1717-1724 https://dx.doi.org/10.1007/s11431-010-3118-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 53 2010 6 06 1717-1724 |
language |
English |
source |
Enthalten in Science in China 53(2010), 6 vom: Juni, Seite 1717-1724 volume:53 year:2010 number:6 month:06 pages:1717-1724 |
sourceStr |
Enthalten in Science in China 53(2010), 6 vom: Juni, Seite 1717-1724 volume:53 year:2010 number:6 month:06 pages:1717-1724 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mars exploration Martian crustal megnetic field Martian ionosphere energetic particles detection plasma wave detection |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Zou, Hong @@aut@@ Chen, HongFei @@aut@@ Yu, Ning @@aut@@ Shi, WeiHong @@aut@@ Yu, XiangQian @@aut@@ Zou, JiQing @@aut@@ Zhong, WeiYing @@aut@@ |
publishDateDaySort_date |
2010-06-01T00:00:00Z |
hierarchy_top_id |
385614756 |
dewey-sort |
3600 |
id |
SPR019265921 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019265921</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-010-3118-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019265921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-010-3118-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Martian crustal magnetic field on its ionosphere</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mars exploration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martian crustal megnetic field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martian ionosphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energetic particles detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma wave detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, HongFei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, WeiHong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, XiangQian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, JiQing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, WeiYing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">53(2010), 6 vom: Juni, Seite 1717-1724</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1717-1724</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-010-3118-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1717-1724</subfield></datafield></record></collection>
|
author |
Zou, Hong |
spellingShingle |
Zou, Hong ddc 600 bkl 50.00 misc Mars exploration misc Martian crustal megnetic field misc Martian ionosphere misc energetic particles detection misc plasma wave detection Effects of Martian crustal magnetic field on its ionosphere |
authorStr |
Zou, Hong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614756 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-281X |
topic_title |
600 ASE 50.00 bkl Effects of Martian crustal magnetic field on its ionosphere Mars exploration (dpeaa)DE-He213 Martian crustal megnetic field (dpeaa)DE-He213 Martian ionosphere (dpeaa)DE-He213 energetic particles detection (dpeaa)DE-He213 plasma wave detection (dpeaa)DE-He213 |
topic |
ddc 600 bkl 50.00 misc Mars exploration misc Martian crustal megnetic field misc Martian ionosphere misc energetic particles detection misc plasma wave detection |
topic_unstemmed |
ddc 600 bkl 50.00 misc Mars exploration misc Martian crustal megnetic field misc Martian ionosphere misc energetic particles detection misc plasma wave detection |
topic_browse |
ddc 600 bkl 50.00 misc Mars exploration misc Martian crustal megnetic field misc Martian ionosphere misc energetic particles detection misc plasma wave detection |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614756 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614756 (DE-600)2142897-9 |
title |
Effects of Martian crustal magnetic field on its ionosphere |
ctrlnum |
(DE-627)SPR019265921 (SPR)s11431-010-3118-1-e |
title_full |
Effects of Martian crustal magnetic field on its ionosphere |
author_sort |
Zou, Hong |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
1717 |
author_browse |
Zou, Hong Chen, HongFei Yu, Ning Shi, WeiHong Yu, XiangQian Zou, JiQing Zhong, WeiYing |
container_volume |
53 |
class |
600 ASE 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zou, Hong |
doi_str_mv |
10.1007/s11431-010-3118-1 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
effects of martian crustal magnetic field on its ionosphere |
title_auth |
Effects of Martian crustal magnetic field on its ionosphere |
abstract |
Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. |
abstractGer |
Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. |
abstract_unstemmed |
Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
6 |
title_short |
Effects of Martian crustal magnetic field on its ionosphere |
url |
https://dx.doi.org/10.1007/s11431-010-3118-1 |
remote_bool |
true |
author2 |
Chen, HongFei Yu, Ning Shi, WeiHong Yu, XiangQian Zou, JiQing Zhong, WeiYing |
author2Str |
Chen, HongFei Yu, Ning Shi, WeiHong Yu, XiangQian Zou, JiQing Zhong, WeiYing |
ppnlink |
385614756 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11431-010-3118-1 |
up_date |
2024-07-04T00:53:24.147Z |
_version_ |
1803607766887038976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019265921</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065353.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-010-3118-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019265921</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-010-3118-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zou, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of Martian crustal magnetic field on its ionosphere</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The effect of the Martian crustal magnetic field is one of the hot topics of the study of Martian ionosphere. The studies on this topic are summarized in this paper. Main data of the Martian ionosphere were resulted from radio occultation experiments. According to the observations, the electron density scale height and the peak electron density of the Martian ionosphere are influenced by its crustal magnetic field. The strong horizontal magnetic field prevents the vertical diffusion of the plasma and makes the electron density scale height in the topside ionosphere close to that in the photo equilibrium region. In the cusp-like regions with strong vertical magnetic field, the enhanced vertical diffusion leads to a larger electron density scale height in the diffusion equilibrium region. The observation of radio occultation experiment onboard Mars Global Surveyor (MGS) showed that the averaged peak electron density observed in the southern hemisphere with strong crustal magnetic field was slightly larger than that in the northern hemisphere with weak crustal magnetic field. The Mars advanced radar for subsurface and ionosphere sounding (MARSIS) onboard Mars Express (MEX) was the first topside sounder to be used to observe Martian ionosphere. The MARSIS results confirmed that the enhancement of the peak electron density occurred in cusp-like regions with open field lines, and the amount of the enhancement was much larger than that observed by the radio occultation experiment. There are two possible mechanisms for the peak electron density enhancement in the cusp-like crustal magnetic field regions: One is the precipitation of the energetic particles and the other is the heating by the waves excited by plasma instabilities. It’s difficult to determine which one is the key mechanism for the peak electron density enhancement. Based on these studies, several interesting problems on the Martian ionosphere and plasma environment are presented.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mars exploration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martian crustal megnetic field</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martian ionosphere</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">energetic particles detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma wave detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, HongFei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Ning</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, WeiHong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, XiangQian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zou, JiQing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhong, WeiYing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">53(2010), 6 vom: Juni, Seite 1717-1724</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1717-1724</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-010-3118-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1717-1724</subfield></datafield></record></collection>
|
score |
7.401354 |