Study of the nose event on 11 April 2002 with UBK method
Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and...
Ausführliche Beschreibung
Autor*in: |
Wang, YongFu [verfasserIn] Zong, QiuGang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 55(2012), 7 vom: 16. Mai, Seite 1929-1942 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2012 ; number:7 ; day:16 ; month:05 ; pages:1929-1942 |
Links: |
---|
DOI / URN: |
10.1007/s11431-012-4862-1 |
---|
Katalog-ID: |
SPR019276214 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019276214 | ||
003 | DE-627 | ||
005 | 20220111065416.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11431-012-4862-1 |2 doi | |
035 | |a (DE-627)SPR019276214 | ||
035 | |a (SPR)s11431-012-4862-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
082 | 0 | 4 | |a 600 |q ASE |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Wang, YongFu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study of the nose event on 11 April 2002 with UBK method |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. | ||
650 | 4 | |a nose event |7 (dpeaa)DE-He213 | |
650 | 4 | |a UBK method |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zong, QiuGang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 55(2012), 7 vom: 16. Mai, Seite 1929-1942 |w (DE-627)385614756 |w (DE-600)2142897-9 |x 1862-281X |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2012 |g number:7 |g day:16 |g month:05 |g pages:1929-1942 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11431-012-4862-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 50.00 |q ASE |
951 | |a AR | ||
952 | |d 55 |j 2012 |e 7 |b 16 |c 05 |h 1929-1942 |
author_variant |
y w yw q z qz |
---|---|
matchkey_str |
article:1862281X:2012----::tdoteoevno1arl02 |
hierarchy_sort_str |
2012 |
bklnumber |
50.00 |
publishDate |
2012 |
allfields |
10.1007/s11431-012-4862-1 doi (DE-627)SPR019276214 (SPR)s11431-012-4862-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wang, YongFu verfasserin aut Study of the nose event on 11 April 2002 with UBK method 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. nose event (dpeaa)DE-He213 UBK method (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 7 vom: 16. Mai, Seite 1929-1942 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 https://dx.doi.org/10.1007/s11431-012-4862-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 7 16 05 1929-1942 |
spelling |
10.1007/s11431-012-4862-1 doi (DE-627)SPR019276214 (SPR)s11431-012-4862-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wang, YongFu verfasserin aut Study of the nose event on 11 April 2002 with UBK method 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. nose event (dpeaa)DE-He213 UBK method (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 7 vom: 16. Mai, Seite 1929-1942 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 https://dx.doi.org/10.1007/s11431-012-4862-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 7 16 05 1929-1942 |
allfields_unstemmed |
10.1007/s11431-012-4862-1 doi (DE-627)SPR019276214 (SPR)s11431-012-4862-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wang, YongFu verfasserin aut Study of the nose event on 11 April 2002 with UBK method 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. nose event (dpeaa)DE-He213 UBK method (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 7 vom: 16. Mai, Seite 1929-1942 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 https://dx.doi.org/10.1007/s11431-012-4862-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 7 16 05 1929-1942 |
allfieldsGer |
10.1007/s11431-012-4862-1 doi (DE-627)SPR019276214 (SPR)s11431-012-4862-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wang, YongFu verfasserin aut Study of the nose event on 11 April 2002 with UBK method 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. nose event (dpeaa)DE-He213 UBK method (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 7 vom: 16. Mai, Seite 1929-1942 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 https://dx.doi.org/10.1007/s11431-012-4862-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 7 16 05 1929-1942 |
allfieldsSound |
10.1007/s11431-012-4862-1 doi (DE-627)SPR019276214 (SPR)s11431-012-4862-1-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wang, YongFu verfasserin aut Study of the nose event on 11 April 2002 with UBK method 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. nose event (dpeaa)DE-He213 UBK method (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 7 vom: 16. Mai, Seite 1929-1942 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 https://dx.doi.org/10.1007/s11431-012-4862-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 7 16 05 1929-1942 |
language |
English |
source |
Enthalten in Science in China 55(2012), 7 vom: 16. Mai, Seite 1929-1942 volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 |
sourceStr |
Enthalten in Science in China 55(2012), 7 vom: 16. Mai, Seite 1929-1942 volume:55 year:2012 number:7 day:16 month:05 pages:1929-1942 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
nose event UBK method |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Wang, YongFu @@aut@@ Zong, QiuGang @@aut@@ |
publishDateDaySort_date |
2012-05-16T00:00:00Z |
hierarchy_top_id |
385614756 |
dewey-sort |
3600 |
id |
SPR019276214 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019276214</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065416.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-012-4862-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019276214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-012-4862-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, YongFu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of the nose event on 11 April 2002 with UBK method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nose event</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UBK method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zong, QiuGang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">55(2012), 7 vom: 16. Mai, Seite 1929-1942</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:7</subfield><subfield code="g">day:16</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1929-1942</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-012-4862-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">7</subfield><subfield code="b">16</subfield><subfield code="c">05</subfield><subfield code="h">1929-1942</subfield></datafield></record></collection>
|
author |
Wang, YongFu |
spellingShingle |
Wang, YongFu ddc 600 bkl 50.00 misc nose event misc UBK method Study of the nose event on 11 April 2002 with UBK method |
authorStr |
Wang, YongFu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614756 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-281X |
topic_title |
600 ASE 50.00 bkl Study of the nose event on 11 April 2002 with UBK method nose event (dpeaa)DE-He213 UBK method (dpeaa)DE-He213 |
topic |
ddc 600 bkl 50.00 misc nose event misc UBK method |
topic_unstemmed |
ddc 600 bkl 50.00 misc nose event misc UBK method |
topic_browse |
ddc 600 bkl 50.00 misc nose event misc UBK method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614756 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614756 (DE-600)2142897-9 |
title |
Study of the nose event on 11 April 2002 with UBK method |
ctrlnum |
(DE-627)SPR019276214 (SPR)s11431-012-4862-1-e |
title_full |
Study of the nose event on 11 April 2002 with UBK method |
author_sort |
Wang, YongFu |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
1929 |
author_browse |
Wang, YongFu Zong, QiuGang |
container_volume |
55 |
class |
600 ASE 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, YongFu |
doi_str_mv |
10.1007/s11431-012-4862-1 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
study of the nose event on 11 april 2002 with ubk method |
title_auth |
Study of the nose event on 11 April 2002 with UBK method |
abstract |
Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. |
abstractGer |
Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. |
abstract_unstemmed |
Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
7 |
title_short |
Study of the nose event on 11 April 2002 with UBK method |
url |
https://dx.doi.org/10.1007/s11431-012-4862-1 |
remote_bool |
true |
author2 |
Zong, QiuGang |
author2Str |
Zong, QiuGang |
ppnlink |
385614756 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11431-012-4862-1 |
up_date |
2024-07-04T00:55:41.354Z |
_version_ |
1803607910757957632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019276214</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065416.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-012-4862-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019276214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-012-4862-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, YongFu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of the nose event on 11 April 2002 with UBK method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstact Nose event, which names after the nose-like shape of structures in ion spectrograms observed by satellite in the inner magnetosphere, refers to the deep inward penetration of ions from magnetotail at discrete energy bands. Nose events have been studied extensively both with observations and simulations since first discovered in 1970s. In this study we use the UBK method to model the different L-shell penetration characteristics for a multi-band nose event observed by Cluster/CODIF on April 11, 2002. The modeled open-closed orbit separatrices are generally smaller than the observed L-shell penetrations for outbound crossing; the difference varies from −2.02 to −0.62 $ R_{E} $ for different energy channels of $ H^{+} $ bands and from −1.88 to −1.10 $ R_{E} $ for $ O^{+} $ band. The average difference is −1.46 $ R_{E} $. The separatrices for the inbound crossing are generally larger than those of outbound crossing and are more consistent with the observed L-shell penetration depths. The modeled open-closed orbit separatrices are smaller than the observed L-shell penetrations for 6.5–17.1 keV energy channels of $ H^{+} $ bands but larger for 4.0–5.1 keV (due to closed banana orbits region) and 21.7–35.2 keV (due to energy increasing) energy channels of $ H^{+} $ bands. For $ O^{+} $ band, the difference between the modeled open-closed orbit separatrix and observed L-shell penetrations of 4.6 keV energy channel is larger (due to closed banana orbits region), the difference of 7.4 keV energy channel is smaller. The overall average difference is 0.043 $ R_{E} $ for nose structures of inbound crossing. The discrepancies between the model and observation may come from the magnetic field and electric potential models we used. The formation of multi nose event and relations to the observed plasma flow vortices are discussed, the local intense EY may relate to the formation of the observed multi nose structures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nose event</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">UBK method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zong, QiuGang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">55(2012), 7 vom: 16. Mai, Seite 1929-1942</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:7</subfield><subfield code="g">day:16</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1929-1942</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-012-4862-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">7</subfield><subfield code="b">16</subfield><subfield code="c">05</subfield><subfield code="h">1929-1942</subfield></datafield></record></collection>
|
score |
7.4014387 |