Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit
Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plas...
Ausführliche Beschreibung
Autor*in: |
Tian, Tian [verfasserIn] Zong, QiuGang [verfasserIn] Wang, YongFu [verfasserIn] Fei, ZengPing [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 55(2012), 9 vom: 20. Juli, Seite 2570-2577 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2012 ; number:9 ; day:20 ; month:07 ; pages:2570-2577 |
Links: |
---|
DOI / URN: |
10.1007/s11431-012-4973-8 |
---|
Katalog-ID: |
SPR019277229 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019277229 | ||
003 | DE-627 | ||
005 | 20220111065418.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11431-012-4973-8 |2 doi | |
035 | |a (DE-627)SPR019277229 | ||
035 | |a (SPR)s11431-012-4973-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
082 | 0 | 4 | |a 600 |q ASE |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Tian, Tian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. | ||
650 | 4 | |a lunar |7 (dpeaa)DE-He213 | |
650 | 4 | |a space weather |7 (dpeaa)DE-He213 | |
650 | 4 | |a plasma |7 (dpeaa)DE-He213 | |
650 | 4 | |a current sheet |7 (dpeaa)DE-He213 | |
650 | 4 | |a storm |7 (dpeaa)DE-He213 | |
650 | 4 | |a superposed epoch analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zong, QiuGang |e verfasserin |4 aut | |
700 | 1 | |a Wang, YongFu |e verfasserin |4 aut | |
700 | 1 | |a Fei, ZengPing |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 55(2012), 9 vom: 20. Juli, Seite 2570-2577 |w (DE-627)385614756 |w (DE-600)2142897-9 |x 1862-281X |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2012 |g number:9 |g day:20 |g month:07 |g pages:2570-2577 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11431-012-4973-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 50.00 |q ASE |
951 | |a AR | ||
952 | |d 55 |j 2012 |e 9 |b 20 |c 07 |h 2570-2577 |
author_variant |
t t tt q z qz y w yw z f zf |
---|---|
matchkey_str |
article:1862281X:2012----::ttsiasuyfhpoeteoteantciladlsanherh |
hierarchy_sort_str |
2012 |
bklnumber |
50.00 |
publishDate |
2012 |
allfields |
10.1007/s11431-012-4973-8 doi (DE-627)SPR019277229 (SPR)s11431-012-4973-8-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tian, Tian verfasserin aut Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. lunar (dpeaa)DE-He213 space weather (dpeaa)DE-He213 plasma (dpeaa)DE-He213 current sheet (dpeaa)DE-He213 storm (dpeaa)DE-He213 superposed epoch analysis (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Wang, YongFu verfasserin aut Fei, ZengPing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 9 vom: 20. Juli, Seite 2570-2577 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 https://dx.doi.org/10.1007/s11431-012-4973-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 9 20 07 2570-2577 |
spelling |
10.1007/s11431-012-4973-8 doi (DE-627)SPR019277229 (SPR)s11431-012-4973-8-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tian, Tian verfasserin aut Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. lunar (dpeaa)DE-He213 space weather (dpeaa)DE-He213 plasma (dpeaa)DE-He213 current sheet (dpeaa)DE-He213 storm (dpeaa)DE-He213 superposed epoch analysis (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Wang, YongFu verfasserin aut Fei, ZengPing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 9 vom: 20. Juli, Seite 2570-2577 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 https://dx.doi.org/10.1007/s11431-012-4973-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 9 20 07 2570-2577 |
allfields_unstemmed |
10.1007/s11431-012-4973-8 doi (DE-627)SPR019277229 (SPR)s11431-012-4973-8-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tian, Tian verfasserin aut Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. lunar (dpeaa)DE-He213 space weather (dpeaa)DE-He213 plasma (dpeaa)DE-He213 current sheet (dpeaa)DE-He213 storm (dpeaa)DE-He213 superposed epoch analysis (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Wang, YongFu verfasserin aut Fei, ZengPing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 9 vom: 20. Juli, Seite 2570-2577 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 https://dx.doi.org/10.1007/s11431-012-4973-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 9 20 07 2570-2577 |
allfieldsGer |
10.1007/s11431-012-4973-8 doi (DE-627)SPR019277229 (SPR)s11431-012-4973-8-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tian, Tian verfasserin aut Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. lunar (dpeaa)DE-He213 space weather (dpeaa)DE-He213 plasma (dpeaa)DE-He213 current sheet (dpeaa)DE-He213 storm (dpeaa)DE-He213 superposed epoch analysis (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Wang, YongFu verfasserin aut Fei, ZengPing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 9 vom: 20. Juli, Seite 2570-2577 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 https://dx.doi.org/10.1007/s11431-012-4973-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 9 20 07 2570-2577 |
allfieldsSound |
10.1007/s11431-012-4973-8 doi (DE-627)SPR019277229 (SPR)s11431-012-4973-8-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tian, Tian verfasserin aut Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. lunar (dpeaa)DE-He213 space weather (dpeaa)DE-He213 plasma (dpeaa)DE-He213 current sheet (dpeaa)DE-He213 storm (dpeaa)DE-He213 superposed epoch analysis (dpeaa)DE-He213 Zong, QiuGang verfasserin aut Wang, YongFu verfasserin aut Fei, ZengPing verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 55(2012), 9 vom: 20. Juli, Seite 2570-2577 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 https://dx.doi.org/10.1007/s11431-012-4973-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 55 2012 9 20 07 2570-2577 |
language |
English |
source |
Enthalten in Science in China 55(2012), 9 vom: 20. Juli, Seite 2570-2577 volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 |
sourceStr |
Enthalten in Science in China 55(2012), 9 vom: 20. Juli, Seite 2570-2577 volume:55 year:2012 number:9 day:20 month:07 pages:2570-2577 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
lunar space weather plasma current sheet storm superposed epoch analysis |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Tian, Tian @@aut@@ Zong, QiuGang @@aut@@ Wang, YongFu @@aut@@ Fei, ZengPing @@aut@@ |
publishDateDaySort_date |
2012-07-20T00:00:00Z |
hierarchy_top_id |
385614756 |
dewey-sort |
3600 |
id |
SPR019277229 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019277229</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065418.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-012-4973-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019277229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-012-4973-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lunar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space weather</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current sheet</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">storm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superposed epoch analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zong, QiuGang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, YongFu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fei, ZengPing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">55(2012), 9 vom: 20. Juli, Seite 2570-2577</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:9</subfield><subfield code="g">day:20</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:2570-2577</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-012-4973-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">9</subfield><subfield code="b">20</subfield><subfield code="c">07</subfield><subfield code="h">2570-2577</subfield></datafield></record></collection>
|
author |
Tian, Tian |
spellingShingle |
Tian, Tian ddc 600 bkl 50.00 misc lunar misc space weather misc plasma misc current sheet misc storm misc superposed epoch analysis Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
authorStr |
Tian, Tian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614756 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-281X |
topic_title |
600 ASE 50.00 bkl Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit lunar (dpeaa)DE-He213 space weather (dpeaa)DE-He213 plasma (dpeaa)DE-He213 current sheet (dpeaa)DE-He213 storm (dpeaa)DE-He213 superposed epoch analysis (dpeaa)DE-He213 |
topic |
ddc 600 bkl 50.00 misc lunar misc space weather misc plasma misc current sheet misc storm misc superposed epoch analysis |
topic_unstemmed |
ddc 600 bkl 50.00 misc lunar misc space weather misc plasma misc current sheet misc storm misc superposed epoch analysis |
topic_browse |
ddc 600 bkl 50.00 misc lunar misc space weather misc plasma misc current sheet misc storm misc superposed epoch analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614756 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614756 (DE-600)2142897-9 |
title |
Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
ctrlnum |
(DE-627)SPR019277229 (SPR)s11431-012-4973-8-e |
title_full |
Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
author_sort |
Tian, Tian |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
2570 |
author_browse |
Tian, Tian Zong, QiuGang Wang, YongFu Fei, ZengPing |
container_volume |
55 |
class |
600 ASE 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, Tian |
doi_str_mv |
10.1007/s11431-012-4973-8 |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
title_auth |
Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
abstract |
Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. |
abstractGer |
Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. |
abstract_unstemmed |
Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
9 |
title_short |
Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit |
url |
https://dx.doi.org/10.1007/s11431-012-4973-8 |
remote_bool |
true |
author2 |
Zong, QiuGang Wang, YongFu Fei, ZengPing |
author2Str |
Zong, QiuGang Wang, YongFu Fei, ZengPing |
ppnlink |
385614756 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11431-012-4973-8 |
up_date |
2024-07-04T00:55:54.843Z |
_version_ |
1803607924901150720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019277229</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065418.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-012-4973-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019277229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-012-4973-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, Tian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical study of the properties of the magnetic field and plasma in the earth’s magnetotail near lunar orbit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Based on the magnetic field and plasma data obtained by GEOTAIL in 1992–1995 and WIND in1994–2009, the magnetic field and plasma properties in the magnetotail near lunar orbit were studied statistically using the superposed epoch analysis. The results showed that near the 0° sector the plasma density was negatively correlated with Dst index while the temperature was positively correlated with Dst index. The plasma velocity and magnetic field strength had little correlation with Dst index. Around the current sheet near the lunar orbit, the Bx varied between −15-15 nT, the plasma density was less than 0.4 $ cm^{−3} $, the median of plasma density for all events was less than 0.1 $ cm^{−3} $, the temperature varied from 0.016 to 8.98 keV, the median of the plasma temperature for all the events was ∼3 keV, the median of speed was about 200 km/s and the maximum speed was up to 1500 km/s. The tailward and earthward flows could be observed accompanied with the current sheet. For the current sheet cases with tailward flow, the Bx varied from −15 to 15 nT, the upper quartile of plasma velocity was more than 400 km/s, the maximum speed was up to 1500 km/s. For the current sheet cases with tailward flow, the Bx varied from −10 to 10 nT, the upper quartile of plasma velocity was less than 400 km/s, the maximum speed was up to 1200 km/s. The median of plasma density, temperature and velocity were similar for the two categories. This paper discussed the relationship between above results and magnetic reconnection at magnetic tail, compared the above results with the observation in the far magnetotail. We fitted the statistical results according to the Harris current sheet model, and the observation was consistent with Harris current sheet model. The above results can provide useful information for the design and protection of lunar-orbiting spacecraft and can be used as the background magnetic field and plasma parameters in the numerical simulation of mid-magnetotail reconnection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">lunar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">space weather</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plasma</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">current sheet</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">storm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superposed epoch analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zong, QiuGang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, YongFu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fei, ZengPing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">55(2012), 9 vom: 20. Juli, Seite 2570-2577</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:9</subfield><subfield code="g">day:20</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:2570-2577</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-012-4973-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">9</subfield><subfield code="b">20</subfield><subfield code="c">07</subfield><subfield code="h">2570-2577</subfield></datafield></record></collection>
|
score |
7.401288 |