Study of the approximate approaches to the POD based spectral representation method
Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the se...
Ausführliche Beschreibung
Autor*in: |
Wu, YongXin [verfasserIn] Gao, YuFeng [verfasserIn] Li, DaYong [verfasserIn] Xu, ChangJie [verfasserIn] Mahfouz, Ali Hasson [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
spectral representation method |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 56(2013), 4 vom: 05. März, Seite 970-979 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2013 ; number:4 ; day:05 ; month:03 ; pages:970-979 |
Links: |
---|
DOI / URN: |
10.1007/s11431-013-5180-y |
---|
Katalog-ID: |
SPR019279817 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019279817 | ||
003 | DE-627 | ||
005 | 20220111065423.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11431-013-5180-y |2 doi | |
035 | |a (DE-627)SPR019279817 | ||
035 | |a (SPR)s11431-013-5180-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
082 | 0 | 4 | |a 600 |q ASE |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Wu, YongXin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study of the approximate approaches to the POD based spectral representation method |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. | ||
650 | 4 | |a stochastic field simulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a coherency matrix based |7 (dpeaa)DE-He213 | |
650 | 4 | |a spectral representation method |7 (dpeaa)DE-He213 | |
650 | 4 | |a proper orthogonal decomposition |7 (dpeaa)DE-He213 | |
650 | 4 | |a approximation |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gao, YuFeng |e verfasserin |4 aut | |
700 | 1 | |a Li, DaYong |e verfasserin |4 aut | |
700 | 1 | |a Xu, ChangJie |e verfasserin |4 aut | |
700 | 1 | |a Mahfouz, Ali Hasson |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 56(2013), 4 vom: 05. März, Seite 970-979 |w (DE-627)385614756 |w (DE-600)2142897-9 |x 1862-281X |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2013 |g number:4 |g day:05 |g month:03 |g pages:970-979 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11431-013-5180-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 50.00 |q ASE |
951 | |a AR | ||
952 | |d 56 |j 2013 |e 4 |b 05 |c 03 |h 970-979 |
author_variant |
y w yw y g yg d l dl c x cx a h m ah ahm |
---|---|
matchkey_str |
article:1862281X:2013----::tdoteprxmtapocetteobsdpcrle |
hierarchy_sort_str |
2013 |
bklnumber |
50.00 |
publishDate |
2013 |
allfields |
10.1007/s11431-013-5180-y doi (DE-627)SPR019279817 (SPR)s11431-013-5180-y-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wu, YongXin verfasserin aut Study of the approximate approaches to the POD based spectral representation method 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. stochastic field simulation (dpeaa)DE-He213 coherency matrix based (dpeaa)DE-He213 spectral representation method (dpeaa)DE-He213 proper orthogonal decomposition (dpeaa)DE-He213 approximation (dpeaa)DE-He213 Gao, YuFeng verfasserin aut Li, DaYong verfasserin aut Xu, ChangJie verfasserin aut Mahfouz, Ali Hasson verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 56(2013), 4 vom: 05. März, Seite 970-979 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:56 year:2013 number:4 day:05 month:03 pages:970-979 https://dx.doi.org/10.1007/s11431-013-5180-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 56 2013 4 05 03 970-979 |
spelling |
10.1007/s11431-013-5180-y doi (DE-627)SPR019279817 (SPR)s11431-013-5180-y-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wu, YongXin verfasserin aut Study of the approximate approaches to the POD based spectral representation method 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. stochastic field simulation (dpeaa)DE-He213 coherency matrix based (dpeaa)DE-He213 spectral representation method (dpeaa)DE-He213 proper orthogonal decomposition (dpeaa)DE-He213 approximation (dpeaa)DE-He213 Gao, YuFeng verfasserin aut Li, DaYong verfasserin aut Xu, ChangJie verfasserin aut Mahfouz, Ali Hasson verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 56(2013), 4 vom: 05. März, Seite 970-979 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:56 year:2013 number:4 day:05 month:03 pages:970-979 https://dx.doi.org/10.1007/s11431-013-5180-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 56 2013 4 05 03 970-979 |
allfields_unstemmed |
10.1007/s11431-013-5180-y doi (DE-627)SPR019279817 (SPR)s11431-013-5180-y-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wu, YongXin verfasserin aut Study of the approximate approaches to the POD based spectral representation method 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. stochastic field simulation (dpeaa)DE-He213 coherency matrix based (dpeaa)DE-He213 spectral representation method (dpeaa)DE-He213 proper orthogonal decomposition (dpeaa)DE-He213 approximation (dpeaa)DE-He213 Gao, YuFeng verfasserin aut Li, DaYong verfasserin aut Xu, ChangJie verfasserin aut Mahfouz, Ali Hasson verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 56(2013), 4 vom: 05. März, Seite 970-979 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:56 year:2013 number:4 day:05 month:03 pages:970-979 https://dx.doi.org/10.1007/s11431-013-5180-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 56 2013 4 05 03 970-979 |
allfieldsGer |
10.1007/s11431-013-5180-y doi (DE-627)SPR019279817 (SPR)s11431-013-5180-y-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wu, YongXin verfasserin aut Study of the approximate approaches to the POD based spectral representation method 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. stochastic field simulation (dpeaa)DE-He213 coherency matrix based (dpeaa)DE-He213 spectral representation method (dpeaa)DE-He213 proper orthogonal decomposition (dpeaa)DE-He213 approximation (dpeaa)DE-He213 Gao, YuFeng verfasserin aut Li, DaYong verfasserin aut Xu, ChangJie verfasserin aut Mahfouz, Ali Hasson verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 56(2013), 4 vom: 05. März, Seite 970-979 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:56 year:2013 number:4 day:05 month:03 pages:970-979 https://dx.doi.org/10.1007/s11431-013-5180-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 56 2013 4 05 03 970-979 |
allfieldsSound |
10.1007/s11431-013-5180-y doi (DE-627)SPR019279817 (SPR)s11431-013-5180-y-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Wu, YongXin verfasserin aut Study of the approximate approaches to the POD based spectral representation method 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. stochastic field simulation (dpeaa)DE-He213 coherency matrix based (dpeaa)DE-He213 spectral representation method (dpeaa)DE-He213 proper orthogonal decomposition (dpeaa)DE-He213 approximation (dpeaa)DE-He213 Gao, YuFeng verfasserin aut Li, DaYong verfasserin aut Xu, ChangJie verfasserin aut Mahfouz, Ali Hasson verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 56(2013), 4 vom: 05. März, Seite 970-979 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:56 year:2013 number:4 day:05 month:03 pages:970-979 https://dx.doi.org/10.1007/s11431-013-5180-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 56 2013 4 05 03 970-979 |
language |
English |
source |
Enthalten in Science in China 56(2013), 4 vom: 05. März, Seite 970-979 volume:56 year:2013 number:4 day:05 month:03 pages:970-979 |
sourceStr |
Enthalten in Science in China 56(2013), 4 vom: 05. März, Seite 970-979 volume:56 year:2013 number:4 day:05 month:03 pages:970-979 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
stochastic field simulation coherency matrix based spectral representation method proper orthogonal decomposition approximation |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Wu, YongXin @@aut@@ Gao, YuFeng @@aut@@ Li, DaYong @@aut@@ Xu, ChangJie @@aut@@ Mahfouz, Ali Hasson @@aut@@ |
publishDateDaySort_date |
2013-03-05T00:00:00Z |
hierarchy_top_id |
385614756 |
dewey-sort |
3600 |
id |
SPR019279817 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019279817</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-013-5180-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019279817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-013-5180-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, YongXin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of the approximate approaches to the POD based spectral representation method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic field simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coherency matrix based</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral representation method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proper orthogonal decomposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, YuFeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, DaYong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, ChangJie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahfouz, Ali Hasson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">56(2013), 4 vom: 05. März, Seite 970-979</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:970-979</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-013-5180-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="b">05</subfield><subfield code="c">03</subfield><subfield code="h">970-979</subfield></datafield></record></collection>
|
author |
Wu, YongXin |
spellingShingle |
Wu, YongXin ddc 600 bkl 50.00 misc stochastic field simulation misc coherency matrix based misc spectral representation method misc proper orthogonal decomposition misc approximation Study of the approximate approaches to the POD based spectral representation method |
authorStr |
Wu, YongXin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614756 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-281X |
topic_title |
600 ASE 50.00 bkl Study of the approximate approaches to the POD based spectral representation method stochastic field simulation (dpeaa)DE-He213 coherency matrix based (dpeaa)DE-He213 spectral representation method (dpeaa)DE-He213 proper orthogonal decomposition (dpeaa)DE-He213 approximation (dpeaa)DE-He213 |
topic |
ddc 600 bkl 50.00 misc stochastic field simulation misc coherency matrix based misc spectral representation method misc proper orthogonal decomposition misc approximation |
topic_unstemmed |
ddc 600 bkl 50.00 misc stochastic field simulation misc coherency matrix based misc spectral representation method misc proper orthogonal decomposition misc approximation |
topic_browse |
ddc 600 bkl 50.00 misc stochastic field simulation misc coherency matrix based misc spectral representation method misc proper orthogonal decomposition misc approximation |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614756 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614756 (DE-600)2142897-9 |
title |
Study of the approximate approaches to the POD based spectral representation method |
ctrlnum |
(DE-627)SPR019279817 (SPR)s11431-013-5180-y-e |
title_full |
Study of the approximate approaches to the POD based spectral representation method |
author_sort |
Wu, YongXin |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
970 |
author_browse |
Wu, YongXin Gao, YuFeng Li, DaYong Xu, ChangJie Mahfouz, Ali Hasson |
container_volume |
56 |
class |
600 ASE 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Wu, YongXin |
doi_str_mv |
10.1007/s11431-013-5180-y |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
study of the approximate approaches to the pod based spectral representation method |
title_auth |
Study of the approximate approaches to the POD based spectral representation method |
abstract |
Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. |
abstractGer |
Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. |
abstract_unstemmed |
Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
4 |
title_short |
Study of the approximate approaches to the POD based spectral representation method |
url |
https://dx.doi.org/10.1007/s11431-013-5180-y |
remote_bool |
true |
author2 |
Gao, YuFeng Li, DaYong Xu, ChangJie Mahfouz, Ali Hasson |
author2Str |
Gao, YuFeng Li, DaYong Xu, ChangJie Mahfouz, Ali Hasson |
ppnlink |
385614756 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11431-013-5180-y |
up_date |
2024-07-04T00:56:29.343Z |
_version_ |
1803607961077022720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019279817</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065423.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-013-5180-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019279817</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-013-5180-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, YongXin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of the approximate approaches to the POD based spectral representation method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The spectral representation method (SRM) is most widely used in simulating the stochastic field. The proper orthogonal decomposition (POD) based SRM is an important form. This paper investigates the approximate approaches to the POD-based SRM in simulating two typical problems, i.e., the seismic ground motion and wind velocity fields simulations. Then, the accuracy resulting from the power spectral density matrix-based POD method (PSRM) is compared to that of the coherency matrix-based POD method (CPSRM). It is concluded that the CPSRM maintains a much higher accuracy than the PSRM. In the CPSRM, the linear interpolation of eigenvectors and third-order polynomial interpolation of eigenvalues can be accepted to attain high accuracy; the linearly distributed interpolation nodes are effective in the ground motions simulation; however, the exponentially distributed interpolation nodes are effective in the wind velocity simulation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stochastic field simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">coherency matrix based</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spectral representation method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">proper orthogonal decomposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">approximation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, YuFeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, DaYong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, ChangJie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mahfouz, Ali Hasson</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">56(2013), 4 vom: 05. März, Seite 970-979</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">day:05</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:970-979</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-013-5180-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="b">05</subfield><subfield code="c">03</subfield><subfield code="h">970-979</subfield></datafield></record></collection>
|
score |
7.402466 |