Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging
Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction...
Ausführliche Beschreibung
Autor*in: |
Tang, XiaoBin [verfasserIn] Hou, XiaoXiao [verfasserIn] Shu, DiYun [verfasserIn] Zhai, Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 1997, 58(2015), 10 vom: 22. Juli, Seite 1712-1716 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2015 ; number:10 ; day:22 ; month:07 ; pages:1712-1716 |
Links: |
---|
DOI / URN: |
10.1007/s11431-015-5897-x |
---|
Katalog-ID: |
SPR019284977 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019284977 | ||
003 | DE-627 | ||
005 | 20220111065443.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11431-015-5897-x |2 doi | |
035 | |a (DE-627)SPR019284977 | ||
035 | |a (SPR)s11431-015-5897-x-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q ASE |
082 | 0 | 4 | |a 600 |q ASE |
084 | |a 50.00 |2 bkl | ||
100 | 1 | |a Tang, XiaoBin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. | ||
650 | 4 | |a Cerenkov luminescence imaging |7 (dpeaa)DE-He213 | |
650 | 4 | |a quantum dots |7 (dpeaa)DE-He213 | |
650 | 4 | |a radionuclide |7 (dpeaa)DE-He213 | |
700 | 1 | |a Hou, XiaoXiao |e verfasserin |4 aut | |
700 | 1 | |a Shu, DiYun |e verfasserin |4 aut | |
700 | 1 | |a Zhai, Peng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 1997 |g 58(2015), 10 vom: 22. Juli, Seite 1712-1716 |w (DE-627)385614756 |w (DE-600)2142897-9 |x 1862-281X |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2015 |g number:10 |g day:22 |g month:07 |g pages:1712-1716 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11431-015-5897-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 50.00 |q ASE |
951 | |a AR | ||
952 | |d 58 |j 2015 |e 10 |b 22 |c 07 |h 1712-1716 |
author_variant |
x t xt x h xh d s ds p z pz |
---|---|
matchkey_str |
article:1862281X:2015----::eerhnhitrcinehnsbtenunudtadainciefrhipoeet |
hierarchy_sort_str |
2015 |
bklnumber |
50.00 |
publishDate |
2015 |
allfields |
10.1007/s11431-015-5897-x doi (DE-627)SPR019284977 (SPR)s11431-015-5897-x-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tang, XiaoBin verfasserin aut Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. Cerenkov luminescence imaging (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 radionuclide (dpeaa)DE-He213 Hou, XiaoXiao verfasserin aut Shu, DiYun verfasserin aut Zhai, Peng verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 58(2015), 10 vom: 22. Juli, Seite 1712-1716 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 https://dx.doi.org/10.1007/s11431-015-5897-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 58 2015 10 22 07 1712-1716 |
spelling |
10.1007/s11431-015-5897-x doi (DE-627)SPR019284977 (SPR)s11431-015-5897-x-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tang, XiaoBin verfasserin aut Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. Cerenkov luminescence imaging (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 radionuclide (dpeaa)DE-He213 Hou, XiaoXiao verfasserin aut Shu, DiYun verfasserin aut Zhai, Peng verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 58(2015), 10 vom: 22. Juli, Seite 1712-1716 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 https://dx.doi.org/10.1007/s11431-015-5897-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 58 2015 10 22 07 1712-1716 |
allfields_unstemmed |
10.1007/s11431-015-5897-x doi (DE-627)SPR019284977 (SPR)s11431-015-5897-x-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tang, XiaoBin verfasserin aut Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. Cerenkov luminescence imaging (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 radionuclide (dpeaa)DE-He213 Hou, XiaoXiao verfasserin aut Shu, DiYun verfasserin aut Zhai, Peng verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 58(2015), 10 vom: 22. Juli, Seite 1712-1716 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 https://dx.doi.org/10.1007/s11431-015-5897-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 58 2015 10 22 07 1712-1716 |
allfieldsGer |
10.1007/s11431-015-5897-x doi (DE-627)SPR019284977 (SPR)s11431-015-5897-x-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tang, XiaoBin verfasserin aut Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. Cerenkov luminescence imaging (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 radionuclide (dpeaa)DE-He213 Hou, XiaoXiao verfasserin aut Shu, DiYun verfasserin aut Zhai, Peng verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 58(2015), 10 vom: 22. Juli, Seite 1712-1716 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 https://dx.doi.org/10.1007/s11431-015-5897-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 58 2015 10 22 07 1712-1716 |
allfieldsSound |
10.1007/s11431-015-5897-x doi (DE-627)SPR019284977 (SPR)s11431-015-5897-x-e DE-627 ger DE-627 rakwb eng 600 ASE 600 ASE 50.00 bkl Tang, XiaoBin verfasserin aut Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. Cerenkov luminescence imaging (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 radionuclide (dpeaa)DE-He213 Hou, XiaoXiao verfasserin aut Shu, DiYun verfasserin aut Zhai, Peng verfasserin aut Enthalten in Science in China Heidelberg : Springer, 1997 58(2015), 10 vom: 22. Juli, Seite 1712-1716 (DE-627)385614756 (DE-600)2142897-9 1862-281X nnns volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 https://dx.doi.org/10.1007/s11431-015-5897-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 50.00 ASE AR 58 2015 10 22 07 1712-1716 |
language |
English |
source |
Enthalten in Science in China 58(2015), 10 vom: 22. Juli, Seite 1712-1716 volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 |
sourceStr |
Enthalten in Science in China 58(2015), 10 vom: 22. Juli, Seite 1712-1716 volume:58 year:2015 number:10 day:22 month:07 pages:1712-1716 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cerenkov luminescence imaging quantum dots radionuclide |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Tang, XiaoBin @@aut@@ Hou, XiaoXiao @@aut@@ Shu, DiYun @@aut@@ Zhai, Peng @@aut@@ |
publishDateDaySort_date |
2015-07-22T00:00:00Z |
hierarchy_top_id |
385614756 |
dewey-sort |
3600 |
id |
SPR019284977 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019284977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065443.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-015-5897-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019284977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-015-5897-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, XiaoBin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cerenkov luminescence imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dots</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radionuclide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, XiaoXiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shu, DiYun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">58(2015), 10 vom: 22. Juli, Seite 1712-1716</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:10</subfield><subfield code="g">day:22</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1712-1716</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-015-5897-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">10</subfield><subfield code="b">22</subfield><subfield code="c">07</subfield><subfield code="h">1712-1716</subfield></datafield></record></collection>
|
author |
Tang, XiaoBin |
spellingShingle |
Tang, XiaoBin ddc 600 bkl 50.00 misc Cerenkov luminescence imaging misc quantum dots misc radionuclide Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging |
authorStr |
Tang, XiaoBin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614756 |
format |
electronic Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-281X |
topic_title |
600 ASE 50.00 bkl Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging Cerenkov luminescence imaging (dpeaa)DE-He213 quantum dots (dpeaa)DE-He213 radionuclide (dpeaa)DE-He213 |
topic |
ddc 600 bkl 50.00 misc Cerenkov luminescence imaging misc quantum dots misc radionuclide |
topic_unstemmed |
ddc 600 bkl 50.00 misc Cerenkov luminescence imaging misc quantum dots misc radionuclide |
topic_browse |
ddc 600 bkl 50.00 misc Cerenkov luminescence imaging misc quantum dots misc radionuclide |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614756 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614756 (DE-600)2142897-9 |
title |
Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging |
ctrlnum |
(DE-627)SPR019284977 (SPR)s11431-015-5897-x-e |
title_full |
Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging |
author_sort |
Tang, XiaoBin |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
1712 |
author_browse |
Tang, XiaoBin Hou, XiaoXiao Shu, DiYun Zhai, Peng |
container_volume |
58 |
class |
600 ASE 50.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tang, XiaoBin |
doi_str_mv |
10.1007/s11431-015-5897-x |
dewey-full |
600 |
author2-role |
verfasserin |
title_sort |
research on the interaction mechanism between quantum dots and radionuclides for the improvement of cerenkov luminescence imaging |
title_auth |
Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging |
abstract |
Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. |
abstractGer |
Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. |
abstract_unstemmed |
Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
10 |
title_short |
Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging |
url |
https://dx.doi.org/10.1007/s11431-015-5897-x |
remote_bool |
true |
author2 |
Hou, XiaoXiao Shu, DiYun Zhai, Peng |
author2Str |
Hou, XiaoXiao Shu, DiYun Zhai, Peng |
ppnlink |
385614756 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11431-015-5897-x |
up_date |
2024-07-04T00:57:41.634Z |
_version_ |
1803608036880678912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019284977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065443.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11431-015-5897-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019284977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11431-015-5897-x-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, XiaoBin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Research on the interaction mechanism between quantum dots and radionuclides for the improvement of Cerenkov luminescence imaging</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Cerenkov luminescence imaging (CLI) is a relatively new optical molecular imaging technique. The nature of Stokes shift in quantum dots (QD) can be used to improve the quality of CLI. However, the interaction mechanism of QD with Cerenkov light remains unclear. In this work, the interaction mechanism between QD and radionuclides emitting β rays, γ rays, and Cerenkov light was investigated. The 96-well plates were used to test the different levels of radioactivity of radionuclides with different QD concentrations. Transparent vials were used to determine the relationship between QD fluorescence intensity and the distance from QD to the radionuclide. In addition, black paper was used to block the transmission of Cerenkov light through the QD vials. A linear relationship was found between the number of photons and the radioactivity of radionuclides when the QD concentration was kept constant. Similarly, the number of photons was linearly related to the QD concentration when the radioactivity of radionuclides was kept constant. Furthermore, with the increases in the distance between radionuclides and quantum dots, the number of photons was exponentially decreased. Meanwhile, the number of photons emitted from QD excited by Cerenkov light accounted for 20% the total number of photons excited by 131I radionuclide. The result proved that QD was not only excited by Cerenkov light but also by other rays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cerenkov luminescence imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">quantum dots</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radionuclide</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, XiaoXiao</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shu, DiYun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhai, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 1997</subfield><subfield code="g">58(2015), 10 vom: 22. Juli, Seite 1712-1716</subfield><subfield code="w">(DE-627)385614756</subfield><subfield code="w">(DE-600)2142897-9</subfield><subfield code="x">1862-281X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:10</subfield><subfield code="g">day:22</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1712-1716</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11431-015-5897-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2015</subfield><subfield code="e">10</subfield><subfield code="b">22</subfield><subfield code="c">07</subfield><subfield code="h">1712-1716</subfield></datafield></record></collection>
|
score |
7.4030848 |