Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons
Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play sign...
Ausführliche Beschreibung
Autor*in: |
Zhang, ZeLong [verfasserIn] Xiao, FuLiang [verfasserIn] He, YiHua [verfasserIn] He, ZhaoGuo [verfasserIn] Yang, Chang [verfasserIn] Zhou, XiaoPing [verfasserIn] Tang, LiJun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 2001, 55(2012), 11 vom: 23. Okt., Seite 2624-2634 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2012 ; number:11 ; day:23 ; month:10 ; pages:2624-2634 |
Links: |
---|
DOI / URN: |
10.1007/s11432-012-4698-0 |
---|
Katalog-ID: |
SPR019307454 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019307454 | ||
003 | DE-627 | ||
005 | 20220111065537.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11432-012-4698-0 |2 doi | |
035 | |a (DE-627)SPR019307454 | ||
035 | |a (SPR)s11432-012-4698-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q ASE |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Zhang, ZeLong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. | ||
650 | 4 | |a geostationary orbit |7 (dpeaa)DE-He213 | |
650 | 4 | |a chorus waves |7 (dpeaa)DE-He213 | |
650 | 4 | |a wave-particle interaction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Xiao, FuLiang |e verfasserin |4 aut | |
700 | 1 | |a He, YiHua |e verfasserin |4 aut | |
700 | 1 | |a He, ZhaoGuo |e verfasserin |4 aut | |
700 | 1 | |a Yang, Chang |e verfasserin |4 aut | |
700 | 1 | |a Zhou, XiaoPing |e verfasserin |4 aut | |
700 | 1 | |a Tang, LiJun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 2001 |g 55(2012), 11 vom: 23. Okt., Seite 2624-2634 |w (DE-627)385614764 |w (DE-600)2142898-0 |x 1862-2836 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2012 |g number:11 |g day:23 |g month:10 |g pages:2624-2634 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11432-012-4698-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 54.00 |q ASE |
951 | |a AR | ||
952 | |d 55 |j 2012 |e 11 |b 23 |c 10 |h 2624-2634 |
author_variant |
z z zz f x fx y h yh z h zh c y cy x z xz l t lt |
---|---|
matchkey_str |
article:18622836:2012----::uslnamdlnogrrsnneewedfeetlcouades |
hierarchy_sort_str |
2012 |
bklnumber |
54.00 |
publishDate |
2012 |
allfields |
10.1007/s11432-012-4698-0 doi (DE-627)SPR019307454 (SPR)s11432-012-4698-0-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Zhang, ZeLong verfasserin aut Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. geostationary orbit (dpeaa)DE-He213 chorus waves (dpeaa)DE-He213 wave-particle interaction (dpeaa)DE-He213 Xiao, FuLiang verfasserin aut He, YiHua verfasserin aut He, ZhaoGuo verfasserin aut Yang, Chang verfasserin aut Zhou, XiaoPing verfasserin aut Tang, LiJun verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 55(2012), 11 vom: 23. Okt., Seite 2624-2634 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 https://dx.doi.org/10.1007/s11432-012-4698-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 55 2012 11 23 10 2624-2634 |
spelling |
10.1007/s11432-012-4698-0 doi (DE-627)SPR019307454 (SPR)s11432-012-4698-0-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Zhang, ZeLong verfasserin aut Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. geostationary orbit (dpeaa)DE-He213 chorus waves (dpeaa)DE-He213 wave-particle interaction (dpeaa)DE-He213 Xiao, FuLiang verfasserin aut He, YiHua verfasserin aut He, ZhaoGuo verfasserin aut Yang, Chang verfasserin aut Zhou, XiaoPing verfasserin aut Tang, LiJun verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 55(2012), 11 vom: 23. Okt., Seite 2624-2634 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 https://dx.doi.org/10.1007/s11432-012-4698-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 55 2012 11 23 10 2624-2634 |
allfields_unstemmed |
10.1007/s11432-012-4698-0 doi (DE-627)SPR019307454 (SPR)s11432-012-4698-0-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Zhang, ZeLong verfasserin aut Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. geostationary orbit (dpeaa)DE-He213 chorus waves (dpeaa)DE-He213 wave-particle interaction (dpeaa)DE-He213 Xiao, FuLiang verfasserin aut He, YiHua verfasserin aut He, ZhaoGuo verfasserin aut Yang, Chang verfasserin aut Zhou, XiaoPing verfasserin aut Tang, LiJun verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 55(2012), 11 vom: 23. Okt., Seite 2624-2634 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 https://dx.doi.org/10.1007/s11432-012-4698-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 55 2012 11 23 10 2624-2634 |
allfieldsGer |
10.1007/s11432-012-4698-0 doi (DE-627)SPR019307454 (SPR)s11432-012-4698-0-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Zhang, ZeLong verfasserin aut Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. geostationary orbit (dpeaa)DE-He213 chorus waves (dpeaa)DE-He213 wave-particle interaction (dpeaa)DE-He213 Xiao, FuLiang verfasserin aut He, YiHua verfasserin aut He, ZhaoGuo verfasserin aut Yang, Chang verfasserin aut Zhou, XiaoPing verfasserin aut Tang, LiJun verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 55(2012), 11 vom: 23. Okt., Seite 2624-2634 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 https://dx.doi.org/10.1007/s11432-012-4698-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 55 2012 11 23 10 2624-2634 |
allfieldsSound |
10.1007/s11432-012-4698-0 doi (DE-627)SPR019307454 (SPR)s11432-012-4698-0-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Zhang, ZeLong verfasserin aut Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. geostationary orbit (dpeaa)DE-He213 chorus waves (dpeaa)DE-He213 wave-particle interaction (dpeaa)DE-He213 Xiao, FuLiang verfasserin aut He, YiHua verfasserin aut He, ZhaoGuo verfasserin aut Yang, Chang verfasserin aut Zhou, XiaoPing verfasserin aut Tang, LiJun verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 55(2012), 11 vom: 23. Okt., Seite 2624-2634 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 https://dx.doi.org/10.1007/s11432-012-4698-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 55 2012 11 23 10 2624-2634 |
language |
English |
source |
Enthalten in Science in China 55(2012), 11 vom: 23. Okt., Seite 2624-2634 volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 |
sourceStr |
Enthalten in Science in China 55(2012), 11 vom: 23. Okt., Seite 2624-2634 volume:55 year:2012 number:11 day:23 month:10 pages:2624-2634 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
geostationary orbit chorus waves wave-particle interaction |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Zhang, ZeLong @@aut@@ Xiao, FuLiang @@aut@@ He, YiHua @@aut@@ He, ZhaoGuo @@aut@@ Yang, Chang @@aut@@ Zhou, XiaoPing @@aut@@ Tang, LiJun @@aut@@ |
publishDateDaySort_date |
2012-10-23T00:00:00Z |
hierarchy_top_id |
385614764 |
dewey-sort |
270 |
id |
SPR019307454 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019307454</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065537.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-012-4698-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019307454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-012-4698-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, ZeLong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geostationary orbit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chorus waves</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave-particle interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, FuLiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, YiHua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, ZhaoGuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, XiaoPing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, LiJun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">55(2012), 11 vom: 23. Okt., Seite 2624-2634</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:11</subfield><subfield code="g">day:23</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2624-2634</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-012-4698-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">11</subfield><subfield code="b">23</subfield><subfield code="c">10</subfield><subfield code="h">2624-2634</subfield></datafield></record></collection>
|
author |
Zhang, ZeLong |
spellingShingle |
Zhang, ZeLong ddc 070 bkl 54.00 misc geostationary orbit misc chorus waves misc wave-particle interaction Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons |
authorStr |
Zhang, ZeLong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614764 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2836 |
topic_title |
070 004 ASE 54.00 bkl Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons geostationary orbit (dpeaa)DE-He213 chorus waves (dpeaa)DE-He213 wave-particle interaction (dpeaa)DE-He213 |
topic |
ddc 070 bkl 54.00 misc geostationary orbit misc chorus waves misc wave-particle interaction |
topic_unstemmed |
ddc 070 bkl 54.00 misc geostationary orbit misc chorus waves misc wave-particle interaction |
topic_browse |
ddc 070 bkl 54.00 misc geostationary orbit misc chorus waves misc wave-particle interaction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614764 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614764 (DE-600)2142898-0 |
title |
Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons |
ctrlnum |
(DE-627)SPR019307454 (SPR)s11432-012-4698-0-e |
title_full |
Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons |
author_sort |
Zhang, ZeLong |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
2624 |
author_browse |
Zhang, ZeLong Xiao, FuLiang He, YiHua He, ZhaoGuo Yang, Chang Zhou, XiaoPing Tang, LiJun |
container_volume |
55 |
class |
070 004 ASE 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Zhang, ZeLong |
doi_str_mv |
10.1007/s11432-012-4698-0 |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
quasi-linear modeling of gyroresonance between different mlt chorus and geostationary orbit electrons |
title_auth |
Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons |
abstract |
Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. |
abstractGer |
Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. |
abstract_unstemmed |
Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
11 |
title_short |
Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons |
url |
https://dx.doi.org/10.1007/s11432-012-4698-0 |
remote_bool |
true |
author2 |
Xiao, FuLiang He, YiHua He, ZhaoGuo Yang, Chang Zhou, XiaoPing Tang, LiJun |
author2Str |
Xiao, FuLiang He, YiHua He, ZhaoGuo Yang, Chang Zhou, XiaoPing Tang, LiJun |
ppnlink |
385614764 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11432-012-4698-0 |
up_date |
2024-07-04T01:03:00.204Z |
_version_ |
1803608370923438080 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019307454</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065537.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-012-4698-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019307454</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-012-4698-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, ZeLong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quasi-linear modeling of gyroresonance between different MLT chorus and geostationary orbit electrons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The contributions of dayside and nightside gyroresonance of chorus waves to electron radiation belt evolution at L = 6.6 are detailedly differentiated via fully solving the two-dimensional Fokker-Plank equation. The numerical results show that the chorus waves at different regions play significantly different roles. The dayside chorus waves can cause obvious loss of energetic electrons at lower pitch angles and weak energization at larger pitch angles. The nightside chorus waves can yield significant energization at larger pitch angles, but cannot efficiently resonate with the energetic electrons at lower pitch angle. Due to the numerical difficulty in fully solving Fokker-Planck equation, the cross diffusion terms are often ignored in the previous work. Here the effect of cross diffusion at different regions is further analyzed. On the dayside, ignoring cross diffusion overestimates the electron phase space density by several orders of magnitude at lower pitch angles, and consequently the dayside chorus waves are incorrectly regarded as an effective energization mechanism. On the nightside, ignoring cross diffusion overestimates the electron phase space density (PSD) by about one order of magnitude at larger pitch angles. These numerical results suggest that cross diffusion terms can significantly affect gyroresonance of chorus waves on both the dayside and nightside, which should be included in the future radiation belt models.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">geostationary orbit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chorus waves</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">wave-particle interaction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiao, FuLiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, YiHua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, ZhaoGuo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Chang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, XiaoPing</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tang, LiJun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">55(2012), 11 vom: 23. Okt., Seite 2624-2634</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:11</subfield><subfield code="g">day:23</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:2624-2634</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-012-4698-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">11</subfield><subfield code="b">23</subfield><subfield code="c">10</subfield><subfield code="h">2624-2634</subfield></datafield></record></collection>
|
score |
7.398264 |