Digital computation of the weighted-type fractional Fourier transform
Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with cons...
Ausführliche Beschreibung
Autor*in: |
Mei, Lin [verfasserIn] Zhang, QinYu [verfasserIn] Sha, XueJun [verfasserIn] Zhang, NaiTong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
fractional Fourier transform (FRFT) weighted-type fractional Fourier transform (WFRFT) chirptype fractional Fourier transform (CFRFT) |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 2001, 56(2013), 7 vom: 02. Feb., Seite 1-12 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2013 ; number:7 ; day:02 ; month:02 ; pages:1-12 |
Links: |
---|
DOI / URN: |
10.1007/s11432-013-4818-5 |
---|
Katalog-ID: |
SPR019311869 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019311869 | ||
003 | DE-627 | ||
005 | 20220111065543.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11432-013-4818-5 |2 doi | |
035 | |a (DE-627)SPR019311869 | ||
035 | |a (SPR)s11432-013-4818-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q ASE |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Mei, Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Digital computation of the weighted-type fractional Fourier transform |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. | ||
650 | 4 | |a fractional Fourier transform (FRFT) |7 (dpeaa)DE-He213 | |
650 | 4 | |a weighted-type fractional Fourier transform (WFRFT) |7 (dpeaa)DE-He213 | |
650 | 4 | |a chirptype fractional Fourier transform (CFRFT) |7 (dpeaa)DE-He213 | |
650 | 4 | |a discrete fractional Fourier transform |7 (dpeaa)DE-He213 | |
650 | 4 | |a discrete Fourier transform (DFT) |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhang, QinYu |e verfasserin |4 aut | |
700 | 1 | |a Sha, XueJun |e verfasserin |4 aut | |
700 | 1 | |a Zhang, NaiTong |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 2001 |g 56(2013), 7 vom: 02. Feb., Seite 1-12 |w (DE-627)385614764 |w (DE-600)2142898-0 |x 1862-2836 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2013 |g number:7 |g day:02 |g month:02 |g pages:1-12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11432-013-4818-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 54.00 |q ASE |
951 | |a AR | ||
952 | |d 56 |j 2013 |e 7 |b 02 |c 02 |h 1-12 |
author_variant |
l m lm q z qz x s xs n z nz |
---|---|
matchkey_str |
article:18622836:2013----::iiacmuainfhwihetpfatoa |
hierarchy_sort_str |
2013 |
bklnumber |
54.00 |
publishDate |
2013 |
allfields |
10.1007/s11432-013-4818-5 doi (DE-627)SPR019311869 (SPR)s11432-013-4818-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Mei, Lin verfasserin aut Digital computation of the weighted-type fractional Fourier transform 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. fractional Fourier transform (FRFT) (dpeaa)DE-He213 weighted-type fractional Fourier transform (WFRFT) (dpeaa)DE-He213 chirptype fractional Fourier transform (CFRFT) (dpeaa)DE-He213 discrete fractional Fourier transform (dpeaa)DE-He213 discrete Fourier transform (DFT) (dpeaa)DE-He213 Zhang, QinYu verfasserin aut Sha, XueJun verfasserin aut Zhang, NaiTong verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 56(2013), 7 vom: 02. Feb., Seite 1-12 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:56 year:2013 number:7 day:02 month:02 pages:1-12 https://dx.doi.org/10.1007/s11432-013-4818-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 56 2013 7 02 02 1-12 |
spelling |
10.1007/s11432-013-4818-5 doi (DE-627)SPR019311869 (SPR)s11432-013-4818-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Mei, Lin verfasserin aut Digital computation of the weighted-type fractional Fourier transform 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. fractional Fourier transform (FRFT) (dpeaa)DE-He213 weighted-type fractional Fourier transform (WFRFT) (dpeaa)DE-He213 chirptype fractional Fourier transform (CFRFT) (dpeaa)DE-He213 discrete fractional Fourier transform (dpeaa)DE-He213 discrete Fourier transform (DFT) (dpeaa)DE-He213 Zhang, QinYu verfasserin aut Sha, XueJun verfasserin aut Zhang, NaiTong verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 56(2013), 7 vom: 02. Feb., Seite 1-12 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:56 year:2013 number:7 day:02 month:02 pages:1-12 https://dx.doi.org/10.1007/s11432-013-4818-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 56 2013 7 02 02 1-12 |
allfields_unstemmed |
10.1007/s11432-013-4818-5 doi (DE-627)SPR019311869 (SPR)s11432-013-4818-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Mei, Lin verfasserin aut Digital computation of the weighted-type fractional Fourier transform 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. fractional Fourier transform (FRFT) (dpeaa)DE-He213 weighted-type fractional Fourier transform (WFRFT) (dpeaa)DE-He213 chirptype fractional Fourier transform (CFRFT) (dpeaa)DE-He213 discrete fractional Fourier transform (dpeaa)DE-He213 discrete Fourier transform (DFT) (dpeaa)DE-He213 Zhang, QinYu verfasserin aut Sha, XueJun verfasserin aut Zhang, NaiTong verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 56(2013), 7 vom: 02. Feb., Seite 1-12 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:56 year:2013 number:7 day:02 month:02 pages:1-12 https://dx.doi.org/10.1007/s11432-013-4818-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 56 2013 7 02 02 1-12 |
allfieldsGer |
10.1007/s11432-013-4818-5 doi (DE-627)SPR019311869 (SPR)s11432-013-4818-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Mei, Lin verfasserin aut Digital computation of the weighted-type fractional Fourier transform 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. fractional Fourier transform (FRFT) (dpeaa)DE-He213 weighted-type fractional Fourier transform (WFRFT) (dpeaa)DE-He213 chirptype fractional Fourier transform (CFRFT) (dpeaa)DE-He213 discrete fractional Fourier transform (dpeaa)DE-He213 discrete Fourier transform (DFT) (dpeaa)DE-He213 Zhang, QinYu verfasserin aut Sha, XueJun verfasserin aut Zhang, NaiTong verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 56(2013), 7 vom: 02. Feb., Seite 1-12 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:56 year:2013 number:7 day:02 month:02 pages:1-12 https://dx.doi.org/10.1007/s11432-013-4818-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 56 2013 7 02 02 1-12 |
allfieldsSound |
10.1007/s11432-013-4818-5 doi (DE-627)SPR019311869 (SPR)s11432-013-4818-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Mei, Lin verfasserin aut Digital computation of the weighted-type fractional Fourier transform 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. fractional Fourier transform (FRFT) (dpeaa)DE-He213 weighted-type fractional Fourier transform (WFRFT) (dpeaa)DE-He213 chirptype fractional Fourier transform (CFRFT) (dpeaa)DE-He213 discrete fractional Fourier transform (dpeaa)DE-He213 discrete Fourier transform (DFT) (dpeaa)DE-He213 Zhang, QinYu verfasserin aut Sha, XueJun verfasserin aut Zhang, NaiTong verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 56(2013), 7 vom: 02. Feb., Seite 1-12 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:56 year:2013 number:7 day:02 month:02 pages:1-12 https://dx.doi.org/10.1007/s11432-013-4818-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 56 2013 7 02 02 1-12 |
language |
English |
source |
Enthalten in Science in China 56(2013), 7 vom: 02. Feb., Seite 1-12 volume:56 year:2013 number:7 day:02 month:02 pages:1-12 |
sourceStr |
Enthalten in Science in China 56(2013), 7 vom: 02. Feb., Seite 1-12 volume:56 year:2013 number:7 day:02 month:02 pages:1-12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
fractional Fourier transform (FRFT) weighted-type fractional Fourier transform (WFRFT) chirptype fractional Fourier transform (CFRFT) discrete fractional Fourier transform discrete Fourier transform (DFT) |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Mei, Lin @@aut@@ Zhang, QinYu @@aut@@ Sha, XueJun @@aut@@ Zhang, NaiTong @@aut@@ |
publishDateDaySort_date |
2013-02-02T00:00:00Z |
hierarchy_top_id |
385614764 |
dewey-sort |
270 |
id |
SPR019311869 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019311869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-013-4818-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019311869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-013-4818-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mei, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital computation of the weighted-type fractional Fourier transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional Fourier transform (FRFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted-type fractional Fourier transform (WFRFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chirptype fractional Fourier transform (CFRFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete fractional Fourier transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete Fourier transform (DFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, QinYu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sha, XueJun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, NaiTong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">56(2013), 7 vom: 02. Feb., Seite 1-12</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1-12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-013-4818-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield><subfield code="h">1-12</subfield></datafield></record></collection>
|
author |
Mei, Lin |
spellingShingle |
Mei, Lin ddc 070 bkl 54.00 misc fractional Fourier transform (FRFT) misc weighted-type fractional Fourier transform (WFRFT) misc chirptype fractional Fourier transform (CFRFT) misc discrete fractional Fourier transform misc discrete Fourier transform (DFT) Digital computation of the weighted-type fractional Fourier transform |
authorStr |
Mei, Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614764 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2836 |
topic_title |
070 004 ASE 54.00 bkl Digital computation of the weighted-type fractional Fourier transform fractional Fourier transform (FRFT) (dpeaa)DE-He213 weighted-type fractional Fourier transform (WFRFT) (dpeaa)DE-He213 chirptype fractional Fourier transform (CFRFT) (dpeaa)DE-He213 discrete fractional Fourier transform (dpeaa)DE-He213 discrete Fourier transform (DFT) (dpeaa)DE-He213 |
topic |
ddc 070 bkl 54.00 misc fractional Fourier transform (FRFT) misc weighted-type fractional Fourier transform (WFRFT) misc chirptype fractional Fourier transform (CFRFT) misc discrete fractional Fourier transform misc discrete Fourier transform (DFT) |
topic_unstemmed |
ddc 070 bkl 54.00 misc fractional Fourier transform (FRFT) misc weighted-type fractional Fourier transform (WFRFT) misc chirptype fractional Fourier transform (CFRFT) misc discrete fractional Fourier transform misc discrete Fourier transform (DFT) |
topic_browse |
ddc 070 bkl 54.00 misc fractional Fourier transform (FRFT) misc weighted-type fractional Fourier transform (WFRFT) misc chirptype fractional Fourier transform (CFRFT) misc discrete fractional Fourier transform misc discrete Fourier transform (DFT) |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614764 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614764 (DE-600)2142898-0 |
title |
Digital computation of the weighted-type fractional Fourier transform |
ctrlnum |
(DE-627)SPR019311869 (SPR)s11432-013-4818-5-e |
title_full |
Digital computation of the weighted-type fractional Fourier transform |
author_sort |
Mei, Lin |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Mei, Lin Zhang, QinYu Sha, XueJun Zhang, NaiTong |
container_volume |
56 |
class |
070 004 ASE 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Mei, Lin |
doi_str_mv |
10.1007/s11432-013-4818-5 |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
digital computation of the weighted-type fractional fourier transform |
title_auth |
Digital computation of the weighted-type fractional Fourier transform |
abstract |
Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. |
abstractGer |
Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. |
abstract_unstemmed |
Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
7 |
title_short |
Digital computation of the weighted-type fractional Fourier transform |
url |
https://dx.doi.org/10.1007/s11432-013-4818-5 |
remote_bool |
true |
author2 |
Zhang, QinYu Sha, XueJun Zhang, NaiTong |
author2Str |
Zhang, QinYu Sha, XueJun Zhang, NaiTong |
ppnlink |
385614764 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11432-013-4818-5 |
up_date |
2024-07-04T01:03:58.455Z |
_version_ |
1803608432005087232 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019311869</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-013-4818-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019311869</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-013-4818-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mei, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Digital computation of the weighted-type fractional Fourier transform</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The paper reveals the time-frequency symmetric property of the weighted-type fractional Fourier transform (WFRFT) by investigating the original definition of the WFRFT, and proposes a discrete algorithm of the WFRFT based on the weighted discrete Fourier transform (WDFT) algorithm with constraint conditions of the definition of the WFRFT and time-domain sampling. When the WDFT is considered in digital computation of the WFRFT, the Fourier transform in the definition of the WFRFT should be defined in frequency (Hz) but not angular frequency (rad/s). The sampling period Δt and sampling duration T should satisfy %$ when N-point DFT is utilized. Since Hermite-Gaussian functions are the best known eigenfunctions of the fractional Fourier transform (FRFT), digital computation based on eigendecomposition is also carried out as the additional verification and validation for the WFRFT calculation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fractional Fourier transform (FRFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted-type fractional Fourier transform (WFRFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">chirptype fractional Fourier transform (CFRFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete fractional Fourier transform</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete Fourier transform (DFT)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, QinYu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sha, XueJun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, NaiTong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">56(2013), 7 vom: 02. Feb., Seite 1-12</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:7</subfield><subfield code="g">day:02</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:1-12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-013-4818-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2013</subfield><subfield code="e">7</subfield><subfield code="b">02</subfield><subfield code="c">02</subfield><subfield code="h">1-12</subfield></datafield></record></collection>
|
score |
7.401473 |