Generic regular decompositions for generic zero-dimensional systems
Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic ze...
Ausführliche Beschreibung
Autor*in: |
Tang, XiaoXian [verfasserIn] Chen, ZhengHong [verfasserIn] Xia, BiCan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
generic zero-dimensional system regular-decomposition-unstable variety |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 2001, 57(2014), 9 vom: 08. Jan., Seite 1-14 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2014 ; number:9 ; day:08 ; month:01 ; pages:1-14 |
Links: |
---|
DOI / URN: |
10.1007/s11432-013-5057-5 |
---|
Katalog-ID: |
SPR019315406 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019315406 | ||
003 | DE-627 | ||
005 | 20220111065549.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11432-013-5057-5 |2 doi | |
035 | |a (DE-627)SPR019315406 | ||
035 | |a (SPR)s11432-013-5057-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q ASE |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Tang, XiaoXian |e verfasserin |4 aut | |
245 | 1 | 0 | |a Generic regular decompositions for generic zero-dimensional systems |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. | ||
650 | 4 | |a generic zero-dimensional system |7 (dpeaa)DE-He213 | |
650 | 4 | |a regular-decomposition-unstable variety |7 (dpeaa)DE-He213 | |
650 | 4 | |a parametric triangular decomposition |7 (dpeaa)DE-He213 | |
650 | 4 | |a generic regular decomposition |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, ZhengHong |e verfasserin |4 aut | |
700 | 1 | |a Xia, BiCan |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 2001 |g 57(2014), 9 vom: 08. Jan., Seite 1-14 |w (DE-627)385614764 |w (DE-600)2142898-0 |x 1862-2836 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2014 |g number:9 |g day:08 |g month:01 |g pages:1-14 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11432-013-5057-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 54.00 |q ASE |
951 | |a AR | ||
952 | |d 57 |j 2014 |e 9 |b 08 |c 01 |h 1-14 |
author_variant |
x t xt z c zc b x bx |
---|---|
matchkey_str |
article:18622836:2014----::eeirglreopstosognrceoi |
hierarchy_sort_str |
2014 |
bklnumber |
54.00 |
publishDate |
2014 |
allfields |
10.1007/s11432-013-5057-5 doi (DE-627)SPR019315406 (SPR)s11432-013-5057-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Tang, XiaoXian verfasserin aut Generic regular decompositions for generic zero-dimensional systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. generic zero-dimensional system (dpeaa)DE-He213 regular-decomposition-unstable variety (dpeaa)DE-He213 parametric triangular decomposition (dpeaa)DE-He213 generic regular decomposition (dpeaa)DE-He213 Chen, ZhengHong verfasserin aut Xia, BiCan verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 57(2014), 9 vom: 08. Jan., Seite 1-14 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:57 year:2014 number:9 day:08 month:01 pages:1-14 https://dx.doi.org/10.1007/s11432-013-5057-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 57 2014 9 08 01 1-14 |
spelling |
10.1007/s11432-013-5057-5 doi (DE-627)SPR019315406 (SPR)s11432-013-5057-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Tang, XiaoXian verfasserin aut Generic regular decompositions for generic zero-dimensional systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. generic zero-dimensional system (dpeaa)DE-He213 regular-decomposition-unstable variety (dpeaa)DE-He213 parametric triangular decomposition (dpeaa)DE-He213 generic regular decomposition (dpeaa)DE-He213 Chen, ZhengHong verfasserin aut Xia, BiCan verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 57(2014), 9 vom: 08. Jan., Seite 1-14 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:57 year:2014 number:9 day:08 month:01 pages:1-14 https://dx.doi.org/10.1007/s11432-013-5057-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 57 2014 9 08 01 1-14 |
allfields_unstemmed |
10.1007/s11432-013-5057-5 doi (DE-627)SPR019315406 (SPR)s11432-013-5057-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Tang, XiaoXian verfasserin aut Generic regular decompositions for generic zero-dimensional systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. generic zero-dimensional system (dpeaa)DE-He213 regular-decomposition-unstable variety (dpeaa)DE-He213 parametric triangular decomposition (dpeaa)DE-He213 generic regular decomposition (dpeaa)DE-He213 Chen, ZhengHong verfasserin aut Xia, BiCan verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 57(2014), 9 vom: 08. Jan., Seite 1-14 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:57 year:2014 number:9 day:08 month:01 pages:1-14 https://dx.doi.org/10.1007/s11432-013-5057-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 57 2014 9 08 01 1-14 |
allfieldsGer |
10.1007/s11432-013-5057-5 doi (DE-627)SPR019315406 (SPR)s11432-013-5057-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Tang, XiaoXian verfasserin aut Generic regular decompositions for generic zero-dimensional systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. generic zero-dimensional system (dpeaa)DE-He213 regular-decomposition-unstable variety (dpeaa)DE-He213 parametric triangular decomposition (dpeaa)DE-He213 generic regular decomposition (dpeaa)DE-He213 Chen, ZhengHong verfasserin aut Xia, BiCan verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 57(2014), 9 vom: 08. Jan., Seite 1-14 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:57 year:2014 number:9 day:08 month:01 pages:1-14 https://dx.doi.org/10.1007/s11432-013-5057-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 57 2014 9 08 01 1-14 |
allfieldsSound |
10.1007/s11432-013-5057-5 doi (DE-627)SPR019315406 (SPR)s11432-013-5057-5-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Tang, XiaoXian verfasserin aut Generic regular decompositions for generic zero-dimensional systems 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. generic zero-dimensional system (dpeaa)DE-He213 regular-decomposition-unstable variety (dpeaa)DE-He213 parametric triangular decomposition (dpeaa)DE-He213 generic regular decomposition (dpeaa)DE-He213 Chen, ZhengHong verfasserin aut Xia, BiCan verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 57(2014), 9 vom: 08. Jan., Seite 1-14 (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:57 year:2014 number:9 day:08 month:01 pages:1-14 https://dx.doi.org/10.1007/s11432-013-5057-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 57 2014 9 08 01 1-14 |
language |
English |
source |
Enthalten in Science in China 57(2014), 9 vom: 08. Jan., Seite 1-14 volume:57 year:2014 number:9 day:08 month:01 pages:1-14 |
sourceStr |
Enthalten in Science in China 57(2014), 9 vom: 08. Jan., Seite 1-14 volume:57 year:2014 number:9 day:08 month:01 pages:1-14 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
generic zero-dimensional system regular-decomposition-unstable variety parametric triangular decomposition generic regular decomposition |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Tang, XiaoXian @@aut@@ Chen, ZhengHong @@aut@@ Xia, BiCan @@aut@@ |
publishDateDaySort_date |
2014-01-08T00:00:00Z |
hierarchy_top_id |
385614764 |
dewey-sort |
270 |
id |
SPR019315406 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019315406</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-013-5057-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019315406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-013-5057-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, XiaoXian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generic regular decompositions for generic zero-dimensional systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generic zero-dimensional system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regular-decomposition-unstable variety</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric triangular decomposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generic regular decomposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, ZhengHong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, BiCan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">57(2014), 9 vom: 08. Jan., Seite 1-14</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:9</subfield><subfield code="g">day:08</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-013-5057-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2014</subfield><subfield code="e">9</subfield><subfield code="b">08</subfield><subfield code="c">01</subfield><subfield code="h">1-14</subfield></datafield></record></collection>
|
author |
Tang, XiaoXian |
spellingShingle |
Tang, XiaoXian ddc 070 bkl 54.00 misc generic zero-dimensional system misc regular-decomposition-unstable variety misc parametric triangular decomposition misc generic regular decomposition Generic regular decompositions for generic zero-dimensional systems |
authorStr |
Tang, XiaoXian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614764 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2836 |
topic_title |
070 004 ASE 54.00 bkl Generic regular decompositions for generic zero-dimensional systems generic zero-dimensional system (dpeaa)DE-He213 regular-decomposition-unstable variety (dpeaa)DE-He213 parametric triangular decomposition (dpeaa)DE-He213 generic regular decomposition (dpeaa)DE-He213 |
topic |
ddc 070 bkl 54.00 misc generic zero-dimensional system misc regular-decomposition-unstable variety misc parametric triangular decomposition misc generic regular decomposition |
topic_unstemmed |
ddc 070 bkl 54.00 misc generic zero-dimensional system misc regular-decomposition-unstable variety misc parametric triangular decomposition misc generic regular decomposition |
topic_browse |
ddc 070 bkl 54.00 misc generic zero-dimensional system misc regular-decomposition-unstable variety misc parametric triangular decomposition misc generic regular decomposition |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614764 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614764 (DE-600)2142898-0 |
title |
Generic regular decompositions for generic zero-dimensional systems |
ctrlnum |
(DE-627)SPR019315406 (SPR)s11432-013-5057-5-e |
title_full |
Generic regular decompositions for generic zero-dimensional systems |
author_sort |
Tang, XiaoXian |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
1 |
author_browse |
Tang, XiaoXian Chen, ZhengHong Xia, BiCan |
container_volume |
57 |
class |
070 004 ASE 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tang, XiaoXian |
doi_str_mv |
10.1007/s11432-013-5057-5 |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
generic regular decompositions for generic zero-dimensional systems |
title_auth |
Generic regular decompositions for generic zero-dimensional systems |
abstract |
Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. |
abstractGer |
Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. |
abstract_unstemmed |
Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
9 |
title_short |
Generic regular decompositions for generic zero-dimensional systems |
url |
https://dx.doi.org/10.1007/s11432-013-5057-5 |
remote_bool |
true |
author2 |
Chen, ZhengHong Xia, BiCan |
author2Str |
Chen, ZhengHong Xia, BiCan |
ppnlink |
385614764 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11432-013-5057-5 |
up_date |
2024-07-04T01:04:45.062Z |
_version_ |
1803608480875020288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019315406</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065549.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-013-5057-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019315406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-013-5057-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tang, XiaoXian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Generic regular decompositions for generic zero-dimensional systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Two new concepts, generic regular decomposition and regular-decomposition-unstable (RDU) variety for generic zero-dimensional systems, are introduced in this paper and an algorithm is proposed for computing a generic regular decomposition and the associated RDU variety of a given generic zero-dimensional system simultaneously. The solutions of the given system can be expressed by finitely many zero-dimensional regular chains if the parameter value is not on the RDU variety. The so called weakly relatively simplicial decomposition plays a crucial role in the algorithm, which is based on the theories of subresultants. Furthermore, the algorithm can be naturally adopted to compute a non-redundant Wu’s decomposition and the decomposition is stable at any parameter value that is not on the RDU variety. The algorithm has been implemented with Maple 16 and experimented with a number of benchmarks from the literature. Empirical results are also presented to show the good performance of the algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generic zero-dimensional system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">regular-decomposition-unstable variety</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">parametric triangular decomposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generic regular decomposition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, ZhengHong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xia, BiCan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">57(2014), 9 vom: 08. Jan., Seite 1-14</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:9</subfield><subfield code="g">day:08</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1-14</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-013-5057-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2014</subfield><subfield code="e">9</subfield><subfield code="b">08</subfield><subfield code="c">01</subfield><subfield code="h">1-14</subfield></datafield></record></collection>
|
score |
7.4009247 |