A framework for stability analysis of high-order nonlinear systems based on the CMAC method
Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems,...
Ausführliche Beschreibung
Autor*in: |
Jiang, Tiantian [verfasserIn] Wu, Hongxin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 2001, 59(2016), 11 vom: 30. Sept. |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2016 ; number:11 ; day:30 ; month:09 |
Links: |
---|
DOI / URN: |
10.1007/s11432-016-5568-y |
---|
Katalog-ID: |
SPR019318219 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019318219 | ||
003 | DE-627 | ||
005 | 20220111065601.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11432-016-5568-y |2 doi | |
035 | |a (DE-627)SPR019318219 | ||
035 | |a (SPR)s11432-016-5568-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q ASE |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Jiang, Tiantian |e verfasserin |4 aut | |
245 | 1 | 2 | |a A framework for stability analysis of high-order nonlinear systems based on the CMAC method |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. | ||
650 | 4 | |a characteristic model |7 (dpeaa)DE-He213 | |
650 | 4 | |a characteristic model-based adaptive control (CMAC) |7 (dpeaa)DE-He213 | |
650 | 4 | |a consistency condition |7 (dpeaa)DE-He213 | |
650 | 4 | |a stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a high-order nonlinear system |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wu, Hongxin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 2001 |g 59(2016), 11 vom: 30. Sept. |w (DE-627)385614764 |w (DE-600)2142898-0 |x 1862-2836 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2016 |g number:11 |g day:30 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11432-016-5568-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-BBI | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 54.00 |q ASE |
951 | |a AR | ||
952 | |d 59 |j 2016 |e 11 |b 30 |c 09 |
author_variant |
t j tj h w hw |
---|---|
matchkey_str |
article:18622836:2016----::faeokosaiiynlssfihrennierytm |
hierarchy_sort_str |
2016 |
bklnumber |
54.00 |
publishDate |
2016 |
allfields |
10.1007/s11432-016-5568-y doi (DE-627)SPR019318219 (SPR)s11432-016-5568-y-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Jiang, Tiantian verfasserin aut A framework for stability analysis of high-order nonlinear systems based on the CMAC method 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. characteristic model (dpeaa)DE-He213 characteristic model-based adaptive control (CMAC) (dpeaa)DE-He213 consistency condition (dpeaa)DE-He213 stability (dpeaa)DE-He213 high-order nonlinear system (dpeaa)DE-He213 Wu, Hongxin verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 59(2016), 11 vom: 30. Sept. (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:59 year:2016 number:11 day:30 month:09 https://dx.doi.org/10.1007/s11432-016-5568-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 59 2016 11 30 09 |
spelling |
10.1007/s11432-016-5568-y doi (DE-627)SPR019318219 (SPR)s11432-016-5568-y-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Jiang, Tiantian verfasserin aut A framework for stability analysis of high-order nonlinear systems based on the CMAC method 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. characteristic model (dpeaa)DE-He213 characteristic model-based adaptive control (CMAC) (dpeaa)DE-He213 consistency condition (dpeaa)DE-He213 stability (dpeaa)DE-He213 high-order nonlinear system (dpeaa)DE-He213 Wu, Hongxin verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 59(2016), 11 vom: 30. Sept. (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:59 year:2016 number:11 day:30 month:09 https://dx.doi.org/10.1007/s11432-016-5568-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 59 2016 11 30 09 |
allfields_unstemmed |
10.1007/s11432-016-5568-y doi (DE-627)SPR019318219 (SPR)s11432-016-5568-y-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Jiang, Tiantian verfasserin aut A framework for stability analysis of high-order nonlinear systems based on the CMAC method 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. characteristic model (dpeaa)DE-He213 characteristic model-based adaptive control (CMAC) (dpeaa)DE-He213 consistency condition (dpeaa)DE-He213 stability (dpeaa)DE-He213 high-order nonlinear system (dpeaa)DE-He213 Wu, Hongxin verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 59(2016), 11 vom: 30. Sept. (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:59 year:2016 number:11 day:30 month:09 https://dx.doi.org/10.1007/s11432-016-5568-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 59 2016 11 30 09 |
allfieldsGer |
10.1007/s11432-016-5568-y doi (DE-627)SPR019318219 (SPR)s11432-016-5568-y-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Jiang, Tiantian verfasserin aut A framework for stability analysis of high-order nonlinear systems based on the CMAC method 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. characteristic model (dpeaa)DE-He213 characteristic model-based adaptive control (CMAC) (dpeaa)DE-He213 consistency condition (dpeaa)DE-He213 stability (dpeaa)DE-He213 high-order nonlinear system (dpeaa)DE-He213 Wu, Hongxin verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 59(2016), 11 vom: 30. Sept. (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:59 year:2016 number:11 day:30 month:09 https://dx.doi.org/10.1007/s11432-016-5568-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 59 2016 11 30 09 |
allfieldsSound |
10.1007/s11432-016-5568-y doi (DE-627)SPR019318219 (SPR)s11432-016-5568-y-e DE-627 ger DE-627 rakwb eng 070 004 ASE 54.00 bkl Jiang, Tiantian verfasserin aut A framework for stability analysis of high-order nonlinear systems based on the CMAC method 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. characteristic model (dpeaa)DE-He213 characteristic model-based adaptive control (CMAC) (dpeaa)DE-He213 consistency condition (dpeaa)DE-He213 stability (dpeaa)DE-He213 high-order nonlinear system (dpeaa)DE-He213 Wu, Hongxin verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2001 59(2016), 11 vom: 30. Sept. (DE-627)385614764 (DE-600)2142898-0 1862-2836 nnns volume:59 year:2016 number:11 day:30 month:09 https://dx.doi.org/10.1007/s11432-016-5568-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 54.00 ASE AR 59 2016 11 30 09 |
language |
English |
source |
Enthalten in Science in China 59(2016), 11 vom: 30. Sept. volume:59 year:2016 number:11 day:30 month:09 |
sourceStr |
Enthalten in Science in China 59(2016), 11 vom: 30. Sept. volume:59 year:2016 number:11 day:30 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
characteristic model characteristic model-based adaptive control (CMAC) consistency condition stability high-order nonlinear system |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Jiang, Tiantian @@aut@@ Wu, Hongxin @@aut@@ |
publishDateDaySort_date |
2016-09-30T00:00:00Z |
hierarchy_top_id |
385614764 |
dewey-sort |
270 |
id |
SPR019318219 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019318219</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-016-5568-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019318219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-016-5568-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A framework for stability analysis of high-order nonlinear systems based on the CMAC method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristic model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristic model-based adaptive control (CMAC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">consistency condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-order nonlinear system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Hongxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">59(2016), 11 vom: 30. Sept.</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:11</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-016-5568-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2016</subfield><subfield code="e">11</subfield><subfield code="b">30</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Jiang, Tiantian |
spellingShingle |
Jiang, Tiantian ddc 070 bkl 54.00 misc characteristic model misc characteristic model-based adaptive control (CMAC) misc consistency condition misc stability misc high-order nonlinear system A framework for stability analysis of high-order nonlinear systems based on the CMAC method |
authorStr |
Jiang, Tiantian |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614764 |
format |
electronic Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2836 |
topic_title |
070 004 ASE 54.00 bkl A framework for stability analysis of high-order nonlinear systems based on the CMAC method characteristic model (dpeaa)DE-He213 characteristic model-based adaptive control (CMAC) (dpeaa)DE-He213 consistency condition (dpeaa)DE-He213 stability (dpeaa)DE-He213 high-order nonlinear system (dpeaa)DE-He213 |
topic |
ddc 070 bkl 54.00 misc characteristic model misc characteristic model-based adaptive control (CMAC) misc consistency condition misc stability misc high-order nonlinear system |
topic_unstemmed |
ddc 070 bkl 54.00 misc characteristic model misc characteristic model-based adaptive control (CMAC) misc consistency condition misc stability misc high-order nonlinear system |
topic_browse |
ddc 070 bkl 54.00 misc characteristic model misc characteristic model-based adaptive control (CMAC) misc consistency condition misc stability misc high-order nonlinear system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614764 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614764 (DE-600)2142898-0 |
title |
A framework for stability analysis of high-order nonlinear systems based on the CMAC method |
ctrlnum |
(DE-627)SPR019318219 (SPR)s11432-016-5568-y-e |
title_full |
A framework for stability analysis of high-order nonlinear systems based on the CMAC method |
author_sort |
Jiang, Tiantian |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Jiang, Tiantian Wu, Hongxin |
container_volume |
59 |
class |
070 004 ASE 54.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Jiang, Tiantian |
doi_str_mv |
10.1007/s11432-016-5568-y |
dewey-full |
070 004 |
author2-role |
verfasserin |
title_sort |
framework for stability analysis of high-order nonlinear systems based on the cmac method |
title_auth |
A framework for stability analysis of high-order nonlinear systems based on the CMAC method |
abstract |
Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. |
abstractGer |
Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. |
abstract_unstemmed |
Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-BBI SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
11 |
title_short |
A framework for stability analysis of high-order nonlinear systems based on the CMAC method |
url |
https://dx.doi.org/10.1007/s11432-016-5568-y |
remote_bool |
true |
author2 |
Wu, Hongxin |
author2Str |
Wu, Hongxin |
ppnlink |
385614764 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11432-016-5568-y |
up_date |
2024-07-04T01:05:22.863Z |
_version_ |
1803608520513290240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019318219</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065601.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11432-016-5568-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019318219</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11432-016-5568-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiang, Tiantian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A framework for stability analysis of high-order nonlinear systems based on the CMAC method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A framework for analyzing the stability of a class of high-order minimum-phase nonlinear systems of relative degree two based on the characteristic model-based adaptive control (CMAC) method is presented. In particular, concerning the tracking problem for such high-order nonlinear systems, by introducing a consistency condition for quantitatively describing modeling errors corresponding to a group of characteristic models together with a certain kind of CMAC laws, we prove closed-loop stability and show that such controllers can make output tracking error arbitrarily small. Furthermore, following this framework, with a specific characteristic model and a golden-section adaptive controller, detailed sufficient conditions to stabilize such groups of highorder nonlinear systems are presented and, at the same time, tracking performance is analyzed. Our results provide a new perspective for exploring the stability of some high-order nonlinear plants under CMAC, and lay certain theoretical foundations for practical applications of the CMAC method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristic model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">characteristic model-based adaptive control (CMAC)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">consistency condition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">high-order nonlinear system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wu, Hongxin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2001</subfield><subfield code="g">59(2016), 11 vom: 30. Sept.</subfield><subfield code="w">(DE-627)385614764</subfield><subfield code="w">(DE-600)2142898-0</subfield><subfield code="x">1862-2836</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:11</subfield><subfield code="g">day:30</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11432-016-5568-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2016</subfield><subfield code="e">11</subfield><subfield code="b">30</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401063 |