Can all the recurrence relations for spherical functions be extended to spheroidal functions
Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind...
Ausführliche Beschreibung
Autor*in: |
Tian, GuiHua [verfasserIn] Li, ZhaoYang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 2003, 54(2011), 10 vom: 17. Aug. |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2011 ; number:10 ; day:17 ; month:08 |
Links: |
---|
DOI / URN: |
10.1007/s11433-011-4469-8 |
---|
Katalog-ID: |
SPR019342438 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019342438 | ||
003 | DE-627 | ||
005 | 20220111065709.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11433-011-4469-8 |2 doi | |
035 | |a (DE-627)SPR019342438 | ||
035 | |a (SPR)s11433-011-4469-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 520 |q ASE |
084 | |a 33.00 |2 bkl | ||
084 | |a 39.00 |2 bkl | ||
100 | 1 | |a Tian, GuiHua |e verfasserin |4 aut | |
245 | 1 | 0 | |a Can all the recurrence relations for spherical functions be extended to spheroidal functions |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. | ||
650 | 4 | |a spheroidal wave functions |7 (dpeaa)DE-He213 | |
650 | 4 | |a supersymmetry quantum mechanics |7 (dpeaa)DE-He213 | |
650 | 4 | |a super-potential |7 (dpeaa)DE-He213 | |
650 | 4 | |a shape-invariance |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, ZhaoYang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 2003 |g 54(2011), 10 vom: 17. Aug. |w (DE-627)385614799 |w (DE-600)2142901-7 |x 1862-2844 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2011 |g number:10 |g day:17 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11433-011-4469-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 33.00 |q ASE |
936 | b | k | |a 39.00 |q ASE |
951 | |a AR | ||
952 | |d 54 |j 2011 |e 10 |b 17 |c 08 |
author_variant |
g t gt z l zl |
---|---|
matchkey_str |
article:18622844:2011----::aalhrcrecrltososhrclucinbetnet |
hierarchy_sort_str |
2011 |
bklnumber |
33.00 39.00 |
publishDate |
2011 |
allfields |
10.1007/s11433-011-4469-8 doi (DE-627)SPR019342438 (SPR)s11433-011-4469-8-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Tian, GuiHua verfasserin aut Can all the recurrence relations for spherical functions be extended to spheroidal functions 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. spheroidal wave functions (dpeaa)DE-He213 supersymmetry quantum mechanics (dpeaa)DE-He213 super-potential (dpeaa)DE-He213 shape-invariance (dpeaa)DE-He213 Li, ZhaoYang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 54(2011), 10 vom: 17. Aug. (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:54 year:2011 number:10 day:17 month:08 https://dx.doi.org/10.1007/s11433-011-4469-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 54 2011 10 17 08 |
spelling |
10.1007/s11433-011-4469-8 doi (DE-627)SPR019342438 (SPR)s11433-011-4469-8-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Tian, GuiHua verfasserin aut Can all the recurrence relations for spherical functions be extended to spheroidal functions 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. spheroidal wave functions (dpeaa)DE-He213 supersymmetry quantum mechanics (dpeaa)DE-He213 super-potential (dpeaa)DE-He213 shape-invariance (dpeaa)DE-He213 Li, ZhaoYang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 54(2011), 10 vom: 17. Aug. (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:54 year:2011 number:10 day:17 month:08 https://dx.doi.org/10.1007/s11433-011-4469-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 54 2011 10 17 08 |
allfields_unstemmed |
10.1007/s11433-011-4469-8 doi (DE-627)SPR019342438 (SPR)s11433-011-4469-8-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Tian, GuiHua verfasserin aut Can all the recurrence relations for spherical functions be extended to spheroidal functions 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. spheroidal wave functions (dpeaa)DE-He213 supersymmetry quantum mechanics (dpeaa)DE-He213 super-potential (dpeaa)DE-He213 shape-invariance (dpeaa)DE-He213 Li, ZhaoYang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 54(2011), 10 vom: 17. Aug. (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:54 year:2011 number:10 day:17 month:08 https://dx.doi.org/10.1007/s11433-011-4469-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 54 2011 10 17 08 |
allfieldsGer |
10.1007/s11433-011-4469-8 doi (DE-627)SPR019342438 (SPR)s11433-011-4469-8-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Tian, GuiHua verfasserin aut Can all the recurrence relations for spherical functions be extended to spheroidal functions 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. spheroidal wave functions (dpeaa)DE-He213 supersymmetry quantum mechanics (dpeaa)DE-He213 super-potential (dpeaa)DE-He213 shape-invariance (dpeaa)DE-He213 Li, ZhaoYang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 54(2011), 10 vom: 17. Aug. (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:54 year:2011 number:10 day:17 month:08 https://dx.doi.org/10.1007/s11433-011-4469-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 54 2011 10 17 08 |
allfieldsSound |
10.1007/s11433-011-4469-8 doi (DE-627)SPR019342438 (SPR)s11433-011-4469-8-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Tian, GuiHua verfasserin aut Can all the recurrence relations for spherical functions be extended to spheroidal functions 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. spheroidal wave functions (dpeaa)DE-He213 supersymmetry quantum mechanics (dpeaa)DE-He213 super-potential (dpeaa)DE-He213 shape-invariance (dpeaa)DE-He213 Li, ZhaoYang verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 54(2011), 10 vom: 17. Aug. (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:54 year:2011 number:10 day:17 month:08 https://dx.doi.org/10.1007/s11433-011-4469-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 54 2011 10 17 08 |
language |
English |
source |
Enthalten in Science in China 54(2011), 10 vom: 17. Aug. volume:54 year:2011 number:10 day:17 month:08 |
sourceStr |
Enthalten in Science in China 54(2011), 10 vom: 17. Aug. volume:54 year:2011 number:10 day:17 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
spheroidal wave functions supersymmetry quantum mechanics super-potential shape-invariance |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Tian, GuiHua @@aut@@ Li, ZhaoYang @@aut@@ |
publishDateDaySort_date |
2011-08-17T00:00:00Z |
hierarchy_top_id |
385614799 |
dewey-sort |
3530 |
id |
SPR019342438 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019342438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11433-011-4469-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019342438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11433-011-4469-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, GuiHua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can all the recurrence relations for spherical functions be extended to spheroidal functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spheroidal wave functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supersymmetry quantum mechanics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super-potential</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shape-invariance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, ZhaoYang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2003</subfield><subfield code="g">54(2011), 10 vom: 17. Aug.</subfield><subfield code="w">(DE-627)385614799</subfield><subfield code="w">(DE-600)2142901-7</subfield><subfield code="x">1862-2844</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:10</subfield><subfield code="g">day:17</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11433-011-4469-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2011</subfield><subfield code="e">10</subfield><subfield code="b">17</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Tian, GuiHua |
spellingShingle |
Tian, GuiHua ddc 530 bkl 33.00 bkl 39.00 misc spheroidal wave functions misc supersymmetry quantum mechanics misc super-potential misc shape-invariance Can all the recurrence relations for spherical functions be extended to spheroidal functions |
authorStr |
Tian, GuiHua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614799 |
format |
electronic Article |
dewey-ones |
530 - Physics 520 - Astronomy & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2844 |
topic_title |
530 520 ASE 33.00 bkl 39.00 bkl Can all the recurrence relations for spherical functions be extended to spheroidal functions spheroidal wave functions (dpeaa)DE-He213 supersymmetry quantum mechanics (dpeaa)DE-He213 super-potential (dpeaa)DE-He213 shape-invariance (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.00 bkl 39.00 misc spheroidal wave functions misc supersymmetry quantum mechanics misc super-potential misc shape-invariance |
topic_unstemmed |
ddc 530 bkl 33.00 bkl 39.00 misc spheroidal wave functions misc supersymmetry quantum mechanics misc super-potential misc shape-invariance |
topic_browse |
ddc 530 bkl 33.00 bkl 39.00 misc spheroidal wave functions misc supersymmetry quantum mechanics misc super-potential misc shape-invariance |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614799 |
dewey-tens |
530 - Physics 520 - Astronomy |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614799 (DE-600)2142901-7 |
title |
Can all the recurrence relations for spherical functions be extended to spheroidal functions |
ctrlnum |
(DE-627)SPR019342438 (SPR)s11433-011-4469-8-e |
title_full |
Can all the recurrence relations for spherical functions be extended to spheroidal functions |
author_sort |
Tian, GuiHua |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Tian, GuiHua Li, ZhaoYang |
container_volume |
54 |
class |
530 520 ASE 33.00 bkl 39.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, GuiHua |
doi_str_mv |
10.1007/s11433-011-4469-8 |
dewey-full |
530 520 |
author2-role |
verfasserin |
title_sort |
can all the recurrence relations for spherical functions be extended to spheroidal functions |
title_auth |
Can all the recurrence relations for spherical functions be extended to spheroidal functions |
abstract |
Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. |
abstractGer |
Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. |
abstract_unstemmed |
Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
10 |
title_short |
Can all the recurrence relations for spherical functions be extended to spheroidal functions |
url |
https://dx.doi.org/10.1007/s11433-011-4469-8 |
remote_bool |
true |
author2 |
Li, ZhaoYang |
author2Str |
Li, ZhaoYang |
ppnlink |
385614799 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11433-011-4469-8 |
up_date |
2024-07-04T01:10:48.764Z |
_version_ |
1803608862244208640 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019342438</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11433-011-4469-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019342438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11433-011-4469-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, GuiHua</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Can all the recurrence relations for spherical functions be extended to spheroidal functions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract There are two kinds of recurrence relations for the spherical functions Plm. The first are those with the same m but different l. The second are those with the same l but different m. The spheroidal functions are extensions of the spherical functions. Recurrence relations of the first kind are obtained for the spheroidal functions in recent studies. Using the shape invariance method in supersymmetric quantum mechanics, we investigate the second type of recurrence relations for the spheroidal functions. The results show that the second kind of recurrence relation can not be extended to the spheroidal functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">spheroidal wave functions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">supersymmetry quantum mechanics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">super-potential</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">shape-invariance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, ZhaoYang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2003</subfield><subfield code="g">54(2011), 10 vom: 17. Aug.</subfield><subfield code="w">(DE-627)385614799</subfield><subfield code="w">(DE-600)2142901-7</subfield><subfield code="x">1862-2844</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:10</subfield><subfield code="g">day:17</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11433-011-4469-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2011</subfield><subfield code="e">10</subfield><subfield code="b">17</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4010277 |