Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations
Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to det...
Ausführliche Beschreibung
Autor*in: |
Petrova, Nataliya [verfasserIn] Gusev, Alexander [verfasserIn] Ping, JinSong [verfasserIn] Ivanova, Tamara [verfasserIn] Hanada, Hideo [verfasserIn] Kawano, Nobuyuki [verfasserIn] Su, XiaoLi [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Science in China - Heidelberg : Springer, 2003, 55(2012), 5 vom: 28. März, Seite 888-891 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2012 ; number:5 ; day:28 ; month:03 ; pages:888-891 |
Links: |
---|
DOI / URN: |
10.1007/s11433-012-4698-5 |
---|
Katalog-ID: |
SPR019348843 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019348843 | ||
003 | DE-627 | ||
005 | 20220111065714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11433-012-4698-5 |2 doi | |
035 | |a (DE-627)SPR019348843 | ||
035 | |a (SPR)s11433-012-4698-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 520 |q ASE |
084 | |a 33.00 |2 bkl | ||
084 | |a 39.00 |2 bkl | ||
100 | 1 | |a Petrova, Nataliya |e verfasserin |4 aut | |
245 | 1 | 0 | |a Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). | ||
650 | 4 | |a ILOM |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lunar |7 (dpeaa)DE-He213 | |
650 | 4 | |a physical libration |7 (dpeaa)DE-He213 | |
650 | 4 | |a telescope |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gusev, Alexander |e verfasserin |4 aut | |
700 | 1 | |a Ping, JinSong |e verfasserin |4 aut | |
700 | 1 | |a Ivanova, Tamara |e verfasserin |4 aut | |
700 | 1 | |a Hanada, Hideo |e verfasserin |4 aut | |
700 | 1 | |a Kawano, Nobuyuki |e verfasserin |4 aut | |
700 | 1 | |a Su, XiaoLi |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Science in China |d Heidelberg : Springer, 2003 |g 55(2012), 5 vom: 28. März, Seite 888-891 |w (DE-627)385614799 |w (DE-600)2142901-7 |x 1862-2844 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2012 |g number:5 |g day:28 |g month:03 |g pages:888-891 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11433-012-4698-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OPC-AST | ||
912 | |a SSG-OPC-ASE | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
936 | b | k | |a 33.00 |q ASE |
936 | b | k | |a 39.00 |q ASE |
951 | |a AR | ||
952 | |d 55 |j 2012 |e 5 |b 28 |c 03 |h 888-891 |
author_variant |
n p np a g ag j p jp t i ti h h hh n k nk x s xs |
---|---|
matchkey_str |
article:18622844:2012----::uapoetlmplctootenltclhoyfuapyialbainote |
hierarchy_sort_str |
2012 |
bklnumber |
33.00 39.00 |
publishDate |
2012 |
allfields |
10.1007/s11433-012-4698-5 doi (DE-627)SPR019348843 (SPR)s11433-012-4698-5-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Petrova, Nataliya verfasserin aut Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). ILOM (dpeaa)DE-He213 Lunar (dpeaa)DE-He213 physical libration (dpeaa)DE-He213 telescope (dpeaa)DE-He213 Gusev, Alexander verfasserin aut Ping, JinSong verfasserin aut Ivanova, Tamara verfasserin aut Hanada, Hideo verfasserin aut Kawano, Nobuyuki verfasserin aut Su, XiaoLi verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 55(2012), 5 vom: 28. März, Seite 888-891 (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:55 year:2012 number:5 day:28 month:03 pages:888-891 https://dx.doi.org/10.1007/s11433-012-4698-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 55 2012 5 28 03 888-891 |
spelling |
10.1007/s11433-012-4698-5 doi (DE-627)SPR019348843 (SPR)s11433-012-4698-5-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Petrova, Nataliya verfasserin aut Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). ILOM (dpeaa)DE-He213 Lunar (dpeaa)DE-He213 physical libration (dpeaa)DE-He213 telescope (dpeaa)DE-He213 Gusev, Alexander verfasserin aut Ping, JinSong verfasserin aut Ivanova, Tamara verfasserin aut Hanada, Hideo verfasserin aut Kawano, Nobuyuki verfasserin aut Su, XiaoLi verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 55(2012), 5 vom: 28. März, Seite 888-891 (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:55 year:2012 number:5 day:28 month:03 pages:888-891 https://dx.doi.org/10.1007/s11433-012-4698-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 55 2012 5 28 03 888-891 |
allfields_unstemmed |
10.1007/s11433-012-4698-5 doi (DE-627)SPR019348843 (SPR)s11433-012-4698-5-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Petrova, Nataliya verfasserin aut Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). ILOM (dpeaa)DE-He213 Lunar (dpeaa)DE-He213 physical libration (dpeaa)DE-He213 telescope (dpeaa)DE-He213 Gusev, Alexander verfasserin aut Ping, JinSong verfasserin aut Ivanova, Tamara verfasserin aut Hanada, Hideo verfasserin aut Kawano, Nobuyuki verfasserin aut Su, XiaoLi verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 55(2012), 5 vom: 28. März, Seite 888-891 (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:55 year:2012 number:5 day:28 month:03 pages:888-891 https://dx.doi.org/10.1007/s11433-012-4698-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 55 2012 5 28 03 888-891 |
allfieldsGer |
10.1007/s11433-012-4698-5 doi (DE-627)SPR019348843 (SPR)s11433-012-4698-5-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Petrova, Nataliya verfasserin aut Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). ILOM (dpeaa)DE-He213 Lunar (dpeaa)DE-He213 physical libration (dpeaa)DE-He213 telescope (dpeaa)DE-He213 Gusev, Alexander verfasserin aut Ping, JinSong verfasserin aut Ivanova, Tamara verfasserin aut Hanada, Hideo verfasserin aut Kawano, Nobuyuki verfasserin aut Su, XiaoLi verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 55(2012), 5 vom: 28. März, Seite 888-891 (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:55 year:2012 number:5 day:28 month:03 pages:888-891 https://dx.doi.org/10.1007/s11433-012-4698-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 55 2012 5 28 03 888-891 |
allfieldsSound |
10.1007/s11433-012-4698-5 doi (DE-627)SPR019348843 (SPR)s11433-012-4698-5-e DE-627 ger DE-627 rakwb eng 530 520 ASE 33.00 bkl 39.00 bkl Petrova, Nataliya verfasserin aut Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). ILOM (dpeaa)DE-He213 Lunar (dpeaa)DE-He213 physical libration (dpeaa)DE-He213 telescope (dpeaa)DE-He213 Gusev, Alexander verfasserin aut Ping, JinSong verfasserin aut Ivanova, Tamara verfasserin aut Hanada, Hideo verfasserin aut Kawano, Nobuyuki verfasserin aut Su, XiaoLi verfasserin aut Enthalten in Science in China Heidelberg : Springer, 2003 55(2012), 5 vom: 28. März, Seite 888-891 (DE-627)385614799 (DE-600)2142901-7 1862-2844 nnns volume:55 year:2012 number:5 day:28 month:03 pages:888-891 https://dx.doi.org/10.1007/s11433-012-4698-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 33.00 ASE 39.00 ASE AR 55 2012 5 28 03 888-891 |
language |
English |
source |
Enthalten in Science in China 55(2012), 5 vom: 28. März, Seite 888-891 volume:55 year:2012 number:5 day:28 month:03 pages:888-891 |
sourceStr |
Enthalten in Science in China 55(2012), 5 vom: 28. März, Seite 888-891 volume:55 year:2012 number:5 day:28 month:03 pages:888-891 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ILOM Lunar physical libration telescope |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Science in China |
authorswithroles_txt_mv |
Petrova, Nataliya @@aut@@ Gusev, Alexander @@aut@@ Ping, JinSong @@aut@@ Ivanova, Tamara @@aut@@ Hanada, Hideo @@aut@@ Kawano, Nobuyuki @@aut@@ Su, XiaoLi @@aut@@ |
publishDateDaySort_date |
2012-03-28T00:00:00Z |
hierarchy_top_id |
385614799 |
dewey-sort |
3530 |
id |
SPR019348843 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019348843</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11433-012-4698-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019348843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11433-012-4698-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrova, Nataliya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ILOM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lunar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical libration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">telescope</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gusev, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ping, JinSong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ivanova, Tamara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanada, Hideo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawano, Nobuyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, XiaoLi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2003</subfield><subfield code="g">55(2012), 5 vom: 28. März, Seite 888-891</subfield><subfield code="w">(DE-627)385614799</subfield><subfield code="w">(DE-600)2142901-7</subfield><subfield code="x">1862-2844</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:5</subfield><subfield code="g">day:28</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:888-891</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11433-012-4698-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">5</subfield><subfield code="b">28</subfield><subfield code="c">03</subfield><subfield code="h">888-891</subfield></datafield></record></collection>
|
author |
Petrova, Nataliya |
spellingShingle |
Petrova, Nataliya ddc 530 bkl 33.00 bkl 39.00 misc ILOM misc Lunar misc physical libration misc telescope Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations |
authorStr |
Petrova, Nataliya |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)385614799 |
format |
electronic Article |
dewey-ones |
530 - Physics 520 - Astronomy & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1862-2844 |
topic_title |
530 520 ASE 33.00 bkl 39.00 bkl Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations ILOM (dpeaa)DE-He213 Lunar (dpeaa)DE-He213 physical libration (dpeaa)DE-He213 telescope (dpeaa)DE-He213 |
topic |
ddc 530 bkl 33.00 bkl 39.00 misc ILOM misc Lunar misc physical libration misc telescope |
topic_unstemmed |
ddc 530 bkl 33.00 bkl 39.00 misc ILOM misc Lunar misc physical libration misc telescope |
topic_browse |
ddc 530 bkl 33.00 bkl 39.00 misc ILOM misc Lunar misc physical libration misc telescope |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Science in China |
hierarchy_parent_id |
385614799 |
dewey-tens |
530 - Physics 520 - Astronomy |
hierarchy_top_title |
Science in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)385614799 (DE-600)2142901-7 |
title |
Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations |
ctrlnum |
(DE-627)SPR019348843 (SPR)s11433-012-4698-5-e |
title_full |
Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations |
author_sort |
Petrova, Nataliya |
journal |
Science in China |
journalStr |
Science in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
888 |
author_browse |
Petrova, Nataliya Gusev, Alexander Ping, JinSong Ivanova, Tamara Hanada, Hideo Kawano, Nobuyuki Su, XiaoLi |
container_volume |
55 |
class |
530 520 ASE 33.00 bkl 39.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Petrova, Nataliya |
doi_str_mv |
10.1007/s11433-012-4698-5 |
dewey-full |
530 520 |
author2-role |
verfasserin |
title_sort |
lunar project ilom: application of the analytical theory of lunar physical libration for the simulation of star observations |
title_auth |
Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations |
abstract |
Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). |
abstractGer |
Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). |
abstract_unstemmed |
Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole). |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OPC-AST SSG-OPC-ASE GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
5 |
title_short |
Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations |
url |
https://dx.doi.org/10.1007/s11433-012-4698-5 |
remote_bool |
true |
author2 |
Gusev, Alexander Ping, JinSong Ivanova, Tamara Hanada, Hideo Kawano, Nobuyuki Su, XiaoLi |
author2Str |
Gusev, Alexander Ping, JinSong Ivanova, Tamara Hanada, Hideo Kawano, Nobuyuki Su, XiaoLi |
ppnlink |
385614799 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11433-012-4698-5 |
up_date |
2024-07-04T01:12:12.958Z |
_version_ |
1803608950530113536 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019348843</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11433-012-4698-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019348843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11433-012-4698-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">520</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">39.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petrova, Nataliya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lunar project ILOM: application of the analytical theory of Lunar physical libration for the simulation of star observations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This study briefly describes the targets and problems of the future Japanese project In situ Lunar Orientation Measurement (ILOM), which is planned for the year 2017. One of the important parts of the project is to place a small optical telescope on the Lunar surface with the purpose to detect the Lunar physical libration with unprecedented accuracy 0.001 arcsec. At the present stage of research the computer simulation of future observations is going on, aiming to determine the moments of transition of a star through the first meridian and the polar distance of the star. Rotation of the Moon is being calculated under the analytical theory developed in the frame of a theme of the grant. A list of stars brighter than 12 m, whose coordinates are close to the Lunar precession pole motion, was constructed on the basis of several star catalogues. On average, for each moment of observation in the field of view of the telescope (1°) there are approximately 20–25 stars. Analyses of simulated stellar tracks observable from the Lunar surface (in a polar zone) reveal the significant difference from daily parallels of stars in comparison with the Earth. During one Lunar “day” equal 237 terrestrial days, a star moves on a spiral. However, depending on a longitude of a star, these spirals can be untwisted or twisted. In the latter case a star can describe a loop in the sky of the Moon during the period of supervision. Such an unusual astrometric phenomenon combined with the slow rotation of the Moon is compared with the Earth and the fast precession motion of the Lunar pole (in comparison with the precession motion of a terrestrial pole).</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ILOM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lunar</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">physical libration</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">telescope</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gusev, Alexander</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ping, JinSong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ivanova, Tamara</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanada, Hideo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawano, Nobuyuki</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Su, XiaoLi</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Science in China</subfield><subfield code="d">Heidelberg : Springer, 2003</subfield><subfield code="g">55(2012), 5 vom: 28. März, Seite 888-891</subfield><subfield code="w">(DE-627)385614799</subfield><subfield code="w">(DE-600)2142901-7</subfield><subfield code="x">1862-2844</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:5</subfield><subfield code="g">day:28</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:888-891</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11433-012-4698-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ASE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">39.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2012</subfield><subfield code="e">5</subfield><subfield code="b">28</subfield><subfield code="c">03</subfield><subfield code="h">888-891</subfield></datafield></record></collection>
|
score |
7.4008694 |