Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode
Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is...
Ausführliche Beschreibung
Autor*in: |
Li, Xiao-Feng [verfasserIn] Li, Jianping [verfasserIn] Zhang, Xiangdong [verfasserIn] Sun, Cheng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chinese science bulletin - Beijing, China : Chinese Acad. of Sciences, 1997, 59(2014), 27 vom: 12. Juni, Seite 3457-3464 |
---|---|
Übergeordnetes Werk: |
volume:59 ; year:2014 ; number:27 ; day:12 ; month:06 ; pages:3457-3464 |
Links: |
---|
DOI / URN: |
10.1007/s11434-014-0477-1 |
---|
Katalog-ID: |
SPR01951767X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR01951767X | ||
003 | DE-627 | ||
005 | 20220111070002.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11434-014-0477-1 |2 doi | |
035 | |a (DE-627)SPR01951767X | ||
035 | |a (SPR)s11434-014-0477-1-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q ASE |
084 | |a 30.00 |2 bkl | ||
100 | 1 | |a Li, Xiao-Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. | ||
650 | 4 | |a Northern Hemisphere Annular Mode |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ferrel cell |7 (dpeaa)DE-He213 | |
650 | 4 | |a Zonal mean circulations |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mass transportation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Surface pressure tendency |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prediction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Daily variability |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Jianping |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Xiangdong |e verfasserin |4 aut | |
700 | 1 | |a Sun, Cheng |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chinese science bulletin |d Beijing, China : Chinese Acad. of Sciences, 1997 |g 59(2014), 27 vom: 12. Juni, Seite 3457-3464 |w (DE-627)341897809 |w (DE-600)2069521-4 |x 1861-9541 |7 nnns |
773 | 1 | 8 | |g volume:59 |g year:2014 |g number:27 |g day:12 |g month:06 |g pages:3457-3464 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11434-014-0477-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
936 | b | k | |a 30.00 |q ASE |
951 | |a AR | ||
952 | |d 59 |j 2014 |e 27 |b 12 |c 06 |h 3457-3464 |
author_variant |
x f l xfl j l jl x z xz c s cs |
---|---|
matchkey_str |
article:18619541:2014----::oeferlelnalvraiiyfotenei |
hierarchy_sort_str |
2014 |
bklnumber |
30.00 |
publishDate |
2014 |
allfields |
10.1007/s11434-014-0477-1 doi (DE-627)SPR01951767X (SPR)s11434-014-0477-1-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Li, Xiao-Feng verfasserin aut Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. Northern Hemisphere Annular Mode (dpeaa)DE-He213 Ferrel cell (dpeaa)DE-He213 Zonal mean circulations (dpeaa)DE-He213 Mass transportation (dpeaa)DE-He213 Surface pressure tendency (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Daily variability (dpeaa)DE-He213 Li, Jianping verfasserin aut Zhang, Xiangdong verfasserin aut Sun, Cheng verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 59(2014), 27 vom: 12. Juni, Seite 3457-3464 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 https://dx.doi.org/10.1007/s11434-014-0477-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_70 GBV_ILN_95 GBV_ILN_266 GBV_ILN_285 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 59 2014 27 12 06 3457-3464 |
spelling |
10.1007/s11434-014-0477-1 doi (DE-627)SPR01951767X (SPR)s11434-014-0477-1-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Li, Xiao-Feng verfasserin aut Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. Northern Hemisphere Annular Mode (dpeaa)DE-He213 Ferrel cell (dpeaa)DE-He213 Zonal mean circulations (dpeaa)DE-He213 Mass transportation (dpeaa)DE-He213 Surface pressure tendency (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Daily variability (dpeaa)DE-He213 Li, Jianping verfasserin aut Zhang, Xiangdong verfasserin aut Sun, Cheng verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 59(2014), 27 vom: 12. Juni, Seite 3457-3464 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 https://dx.doi.org/10.1007/s11434-014-0477-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_70 GBV_ILN_95 GBV_ILN_266 GBV_ILN_285 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 59 2014 27 12 06 3457-3464 |
allfields_unstemmed |
10.1007/s11434-014-0477-1 doi (DE-627)SPR01951767X (SPR)s11434-014-0477-1-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Li, Xiao-Feng verfasserin aut Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. Northern Hemisphere Annular Mode (dpeaa)DE-He213 Ferrel cell (dpeaa)DE-He213 Zonal mean circulations (dpeaa)DE-He213 Mass transportation (dpeaa)DE-He213 Surface pressure tendency (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Daily variability (dpeaa)DE-He213 Li, Jianping verfasserin aut Zhang, Xiangdong verfasserin aut Sun, Cheng verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 59(2014), 27 vom: 12. Juni, Seite 3457-3464 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 https://dx.doi.org/10.1007/s11434-014-0477-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_70 GBV_ILN_95 GBV_ILN_266 GBV_ILN_285 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 59 2014 27 12 06 3457-3464 |
allfieldsGer |
10.1007/s11434-014-0477-1 doi (DE-627)SPR01951767X (SPR)s11434-014-0477-1-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Li, Xiao-Feng verfasserin aut Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. Northern Hemisphere Annular Mode (dpeaa)DE-He213 Ferrel cell (dpeaa)DE-He213 Zonal mean circulations (dpeaa)DE-He213 Mass transportation (dpeaa)DE-He213 Surface pressure tendency (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Daily variability (dpeaa)DE-He213 Li, Jianping verfasserin aut Zhang, Xiangdong verfasserin aut Sun, Cheng verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 59(2014), 27 vom: 12. Juni, Seite 3457-3464 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 https://dx.doi.org/10.1007/s11434-014-0477-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_70 GBV_ILN_95 GBV_ILN_266 GBV_ILN_285 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 59 2014 27 12 06 3457-3464 |
allfieldsSound |
10.1007/s11434-014-0477-1 doi (DE-627)SPR01951767X (SPR)s11434-014-0477-1-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Li, Xiao-Feng verfasserin aut Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. Northern Hemisphere Annular Mode (dpeaa)DE-He213 Ferrel cell (dpeaa)DE-He213 Zonal mean circulations (dpeaa)DE-He213 Mass transportation (dpeaa)DE-He213 Surface pressure tendency (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Daily variability (dpeaa)DE-He213 Li, Jianping verfasserin aut Zhang, Xiangdong verfasserin aut Sun, Cheng verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 59(2014), 27 vom: 12. Juni, Seite 3457-3464 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 https://dx.doi.org/10.1007/s11434-014-0477-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_70 GBV_ILN_95 GBV_ILN_266 GBV_ILN_285 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 59 2014 27 12 06 3457-3464 |
language |
English |
source |
Enthalten in Chinese science bulletin 59(2014), 27 vom: 12. Juni, Seite 3457-3464 volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 |
sourceStr |
Enthalten in Chinese science bulletin 59(2014), 27 vom: 12. Juni, Seite 3457-3464 volume:59 year:2014 number:27 day:12 month:06 pages:3457-3464 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Northern Hemisphere Annular Mode Ferrel cell Zonal mean circulations Mass transportation Surface pressure tendency Prediction Daily variability |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Chinese science bulletin |
authorswithroles_txt_mv |
Li, Xiao-Feng @@aut@@ Li, Jianping @@aut@@ Zhang, Xiangdong @@aut@@ Sun, Cheng @@aut@@ |
publishDateDaySort_date |
2014-06-12T00:00:00Z |
hierarchy_top_id |
341897809 |
dewey-sort |
3500 |
id |
SPR01951767X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR01951767X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111070002.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11434-014-0477-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR01951767X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11434-014-0477-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiao-Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Northern Hemisphere Annular Mode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferrel cell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zonal mean circulations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transportation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface pressure tendency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daily variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jianping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiangdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chinese science bulletin</subfield><subfield code="d">Beijing, China : Chinese Acad. of Sciences, 1997</subfield><subfield code="g">59(2014), 27 vom: 12. Juni, Seite 3457-3464</subfield><subfield code="w">(DE-627)341897809</subfield><subfield code="w">(DE-600)2069521-4</subfield><subfield code="x">1861-9541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:27</subfield><subfield code="g">day:12</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:3457-3464</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11434-014-0477-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2014</subfield><subfield code="e">27</subfield><subfield code="b">12</subfield><subfield code="c">06</subfield><subfield code="h">3457-3464</subfield></datafield></record></collection>
|
author |
Li, Xiao-Feng |
spellingShingle |
Li, Xiao-Feng ddc 500 bkl 30.00 misc Northern Hemisphere Annular Mode misc Ferrel cell misc Zonal mean circulations misc Mass transportation misc Surface pressure tendency misc Prediction misc Daily variability Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode |
authorStr |
Li, Xiao-Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)341897809 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1861-9541 |
topic_title |
500 ASE 30.00 bkl Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode Northern Hemisphere Annular Mode (dpeaa)DE-He213 Ferrel cell (dpeaa)DE-He213 Zonal mean circulations (dpeaa)DE-He213 Mass transportation (dpeaa)DE-He213 Surface pressure tendency (dpeaa)DE-He213 Prediction (dpeaa)DE-He213 Daily variability (dpeaa)DE-He213 |
topic |
ddc 500 bkl 30.00 misc Northern Hemisphere Annular Mode misc Ferrel cell misc Zonal mean circulations misc Mass transportation misc Surface pressure tendency misc Prediction misc Daily variability |
topic_unstemmed |
ddc 500 bkl 30.00 misc Northern Hemisphere Annular Mode misc Ferrel cell misc Zonal mean circulations misc Mass transportation misc Surface pressure tendency misc Prediction misc Daily variability |
topic_browse |
ddc 500 bkl 30.00 misc Northern Hemisphere Annular Mode misc Ferrel cell misc Zonal mean circulations misc Mass transportation misc Surface pressure tendency misc Prediction misc Daily variability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chinese science bulletin |
hierarchy_parent_id |
341897809 |
dewey-tens |
500 - Science |
hierarchy_top_title |
Chinese science bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)341897809 (DE-600)2069521-4 |
title |
Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode |
ctrlnum |
(DE-627)SPR01951767X (SPR)s11434-014-0477-1-e |
title_full |
Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode |
author_sort |
Li, Xiao-Feng |
journal |
Chinese science bulletin |
journalStr |
Chinese science bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
container_start_page |
3457 |
author_browse |
Li, Xiao-Feng Li, Jianping Zhang, Xiangdong Sun, Cheng |
container_volume |
59 |
class |
500 ASE 30.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Xiao-Feng |
doi_str_mv |
10.1007/s11434-014-0477-1 |
dewey-full |
500 |
author2-role |
verfasserin |
title_sort |
role of ferrel cell in daily variability of northern hemisphere annular mode |
title_auth |
Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode |
abstract |
Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. |
abstractGer |
Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. |
abstract_unstemmed |
Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_70 GBV_ILN_95 GBV_ILN_266 GBV_ILN_285 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 |
container_issue |
27 |
title_short |
Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode |
url |
https://dx.doi.org/10.1007/s11434-014-0477-1 |
remote_bool |
true |
author2 |
Li, Jianping Zhang, Xiangdong Sun, Cheng |
author2Str |
Li, Jianping Zhang, Xiangdong Sun, Cheng |
ppnlink |
341897809 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11434-014-0477-1 |
up_date |
2024-07-04T01:57:13.772Z |
_version_ |
1803611782537805824 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR01951767X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111070002.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11434-014-0477-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR01951767X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11434-014-0477-1-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Xiao-Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Role of Ferrel cell in daily variability of Northern Hemisphere Annular Mode</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The Northern Hemisphere Annular Mode (NAM) represents the zonally symmetric planetary-scale atmospheric mass fluctuations between middle and high latitudes, whose variations have shown a large impact on other components of the climate system. Previous studies have indicated that the NAM is correlated with the Ferrel cell in their monthly or longer timescale variability. However, there have been few studies investigating their connections at daily timescale, though daily variability of NAM has been suggested to be an important component and has significant implication for weather forecast. The results from this study demonstrate that variability of the Ferrel cell leads that of the NAM by about 1–2 days. This statistically identified temporal phase difference between NAM and Ferrel cell variability can be elucidated by meridional mass redistribution. Intensified (weakened) Ferrel cell causes anomalously smaller (larger) poleward mass transport from the middle to the high latitudes, resulting in an increase (a decrease) in mass in the middle latitudes and a decrease (an increase) in the high latitudes. As a consequence, anomalously higher (lower) poleward pressure gradient forms and the NAM subsequently shifts to a positive (negative) phase at a time lag of 1–2 days. The findings here would augment the existing knowledge for better understanding the connection between the Ferrel Cell and the NAM, and may provide skillful information for improving NAM as well as daily scale weather prediction.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Northern Hemisphere Annular Mode</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ferrel cell</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Zonal mean circulations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass transportation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surface pressure tendency</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Daily variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Jianping</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiangdong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Cheng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chinese science bulletin</subfield><subfield code="d">Beijing, China : Chinese Acad. of Sciences, 1997</subfield><subfield code="g">59(2014), 27 vom: 12. Juni, Seite 3457-3464</subfield><subfield code="w">(DE-627)341897809</subfield><subfield code="w">(DE-600)2069521-4</subfield><subfield code="x">1861-9541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:59</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:27</subfield><subfield code="g">day:12</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:3457-3464</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11434-014-0477-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">59</subfield><subfield code="j">2014</subfield><subfield code="e">27</subfield><subfield code="b">12</subfield><subfield code="c">06</subfield><subfield code="h">3457-3464</subfield></datafield></record></collection>
|
score |
7.401099 |