Low-temperature magnetic properties of horse spleen ferritin
Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission el...
Ausführliche Beschreibung
Autor*in: |
Tian, LanXiang [verfasserIn] Cao, ChangQian [verfasserIn] Liu, QingSong [verfasserIn] Pan, YongXin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Chinese science bulletin - Beijing, China : Chinese Acad. of Sciences, 1997, 55(2010), 27-28 vom: Sept., Seite 3174-3180 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2010 ; number:27-28 ; month:09 ; pages:3174-3180 |
Links: |
---|
DOI / URN: |
10.1007/s11434-010-4025-3 |
---|
Katalog-ID: |
SPR019587589 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019587589 | ||
003 | DE-627 | ||
005 | 20220111065856.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11434-010-4025-3 |2 doi | |
035 | |a (DE-627)SPR019587589 | ||
035 | |a (SPR)s11434-010-4025-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |q ASE |
084 | |a 30.00 |2 bkl | ||
100 | 1 | |a Tian, LanXiang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Low-temperature magnetic properties of horse spleen ferritin |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. | ||
650 | 4 | |a horse spleen ferritin |7 (dpeaa)DE-He213 | |
650 | 4 | |a superparamagnetic |7 (dpeaa)DE-He213 | |
650 | 4 | |a low temperature magnetic properties |7 (dpeaa)DE-He213 | |
650 | 4 | |a pre-exponential frequency factor |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cao, ChangQian |e verfasserin |4 aut | |
700 | 1 | |a Liu, QingSong |e verfasserin |4 aut | |
700 | 1 | |a Pan, YongXin |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Chinese science bulletin |d Beijing, China : Chinese Acad. of Sciences, 1997 |g 55(2010), 27-28 vom: Sept., Seite 3174-3180 |w (DE-627)341897809 |w (DE-600)2069521-4 |x 1861-9541 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2010 |g number:27-28 |g month:09 |g pages:3174-3180 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11434-010-4025-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_266 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
936 | b | k | |a 30.00 |q ASE |
951 | |a AR | ||
952 | |d 55 |j 2010 |e 27-28 |c 09 |h 3174-3180 |
author_variant |
l t lt c c cc q l ql y p yp |
---|---|
matchkey_str |
article:18619541:2010----::otmeaueantcrprisfos |
hierarchy_sort_str |
2010 |
bklnumber |
30.00 |
publishDate |
2010 |
allfields |
10.1007/s11434-010-4025-3 doi (DE-627)SPR019587589 (SPR)s11434-010-4025-3-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Tian, LanXiang verfasserin aut Low-temperature magnetic properties of horse spleen ferritin 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. horse spleen ferritin (dpeaa)DE-He213 superparamagnetic (dpeaa)DE-He213 low temperature magnetic properties (dpeaa)DE-He213 pre-exponential frequency factor (dpeaa)DE-He213 Cao, ChangQian verfasserin aut Liu, QingSong verfasserin aut Pan, YongXin verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 55(2010), 27-28 vom: Sept., Seite 3174-3180 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:55 year:2010 number:27-28 month:09 pages:3174-3180 https://dx.doi.org/10.1007/s11434-010-4025-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 55 2010 27-28 09 3174-3180 |
spelling |
10.1007/s11434-010-4025-3 doi (DE-627)SPR019587589 (SPR)s11434-010-4025-3-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Tian, LanXiang verfasserin aut Low-temperature magnetic properties of horse spleen ferritin 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. horse spleen ferritin (dpeaa)DE-He213 superparamagnetic (dpeaa)DE-He213 low temperature magnetic properties (dpeaa)DE-He213 pre-exponential frequency factor (dpeaa)DE-He213 Cao, ChangQian verfasserin aut Liu, QingSong verfasserin aut Pan, YongXin verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 55(2010), 27-28 vom: Sept., Seite 3174-3180 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:55 year:2010 number:27-28 month:09 pages:3174-3180 https://dx.doi.org/10.1007/s11434-010-4025-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 55 2010 27-28 09 3174-3180 |
allfields_unstemmed |
10.1007/s11434-010-4025-3 doi (DE-627)SPR019587589 (SPR)s11434-010-4025-3-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Tian, LanXiang verfasserin aut Low-temperature magnetic properties of horse spleen ferritin 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. horse spleen ferritin (dpeaa)DE-He213 superparamagnetic (dpeaa)DE-He213 low temperature magnetic properties (dpeaa)DE-He213 pre-exponential frequency factor (dpeaa)DE-He213 Cao, ChangQian verfasserin aut Liu, QingSong verfasserin aut Pan, YongXin verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 55(2010), 27-28 vom: Sept., Seite 3174-3180 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:55 year:2010 number:27-28 month:09 pages:3174-3180 https://dx.doi.org/10.1007/s11434-010-4025-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 55 2010 27-28 09 3174-3180 |
allfieldsGer |
10.1007/s11434-010-4025-3 doi (DE-627)SPR019587589 (SPR)s11434-010-4025-3-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Tian, LanXiang verfasserin aut Low-temperature magnetic properties of horse spleen ferritin 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. horse spleen ferritin (dpeaa)DE-He213 superparamagnetic (dpeaa)DE-He213 low temperature magnetic properties (dpeaa)DE-He213 pre-exponential frequency factor (dpeaa)DE-He213 Cao, ChangQian verfasserin aut Liu, QingSong verfasserin aut Pan, YongXin verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 55(2010), 27-28 vom: Sept., Seite 3174-3180 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:55 year:2010 number:27-28 month:09 pages:3174-3180 https://dx.doi.org/10.1007/s11434-010-4025-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 55 2010 27-28 09 3174-3180 |
allfieldsSound |
10.1007/s11434-010-4025-3 doi (DE-627)SPR019587589 (SPR)s11434-010-4025-3-e DE-627 ger DE-627 rakwb eng 500 ASE 30.00 bkl Tian, LanXiang verfasserin aut Low-temperature magnetic properties of horse spleen ferritin 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. horse spleen ferritin (dpeaa)DE-He213 superparamagnetic (dpeaa)DE-He213 low temperature magnetic properties (dpeaa)DE-He213 pre-exponential frequency factor (dpeaa)DE-He213 Cao, ChangQian verfasserin aut Liu, QingSong verfasserin aut Pan, YongXin verfasserin aut Enthalten in Chinese science bulletin Beijing, China : Chinese Acad. of Sciences, 1997 55(2010), 27-28 vom: Sept., Seite 3174-3180 (DE-627)341897809 (DE-600)2069521-4 1861-9541 nnns volume:55 year:2010 number:27-28 month:09 pages:3174-3180 https://dx.doi.org/10.1007/s11434-010-4025-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 30.00 ASE AR 55 2010 27-28 09 3174-3180 |
language |
English |
source |
Enthalten in Chinese science bulletin 55(2010), 27-28 vom: Sept., Seite 3174-3180 volume:55 year:2010 number:27-28 month:09 pages:3174-3180 |
sourceStr |
Enthalten in Chinese science bulletin 55(2010), 27-28 vom: Sept., Seite 3174-3180 volume:55 year:2010 number:27-28 month:09 pages:3174-3180 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
horse spleen ferritin superparamagnetic low temperature magnetic properties pre-exponential frequency factor |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Chinese science bulletin |
authorswithroles_txt_mv |
Tian, LanXiang @@aut@@ Cao, ChangQian @@aut@@ Liu, QingSong @@aut@@ Pan, YongXin @@aut@@ |
publishDateDaySort_date |
2010-09-01T00:00:00Z |
hierarchy_top_id |
341897809 |
dewey-sort |
3500 |
id |
SPR019587589 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019587589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11434-010-4025-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019587589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11434-010-4025-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, LanXiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-temperature magnetic properties of horse spleen ferritin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">horse spleen ferritin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superparamagnetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low temperature magnetic properties</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pre-exponential frequency factor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, ChangQian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, QingSong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, YongXin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chinese science bulletin</subfield><subfield code="d">Beijing, China : Chinese Acad. of Sciences, 1997</subfield><subfield code="g">55(2010), 27-28 vom: Sept., Seite 3174-3180</subfield><subfield code="w">(DE-627)341897809</subfield><subfield code="w">(DE-600)2069521-4</subfield><subfield code="x">1861-9541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:27-28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3174-3180</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11434-010-4025-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2010</subfield><subfield code="e">27-28</subfield><subfield code="c">09</subfield><subfield code="h">3174-3180</subfield></datafield></record></collection>
|
author |
Tian, LanXiang |
spellingShingle |
Tian, LanXiang ddc 500 bkl 30.00 misc horse spleen ferritin misc superparamagnetic misc low temperature magnetic properties misc pre-exponential frequency factor Low-temperature magnetic properties of horse spleen ferritin |
authorStr |
Tian, LanXiang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)341897809 |
format |
electronic Article |
dewey-ones |
500 - Natural sciences & mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1861-9541 |
topic_title |
500 ASE 30.00 bkl Low-temperature magnetic properties of horse spleen ferritin horse spleen ferritin (dpeaa)DE-He213 superparamagnetic (dpeaa)DE-He213 low temperature magnetic properties (dpeaa)DE-He213 pre-exponential frequency factor (dpeaa)DE-He213 |
topic |
ddc 500 bkl 30.00 misc horse spleen ferritin misc superparamagnetic misc low temperature magnetic properties misc pre-exponential frequency factor |
topic_unstemmed |
ddc 500 bkl 30.00 misc horse spleen ferritin misc superparamagnetic misc low temperature magnetic properties misc pre-exponential frequency factor |
topic_browse |
ddc 500 bkl 30.00 misc horse spleen ferritin misc superparamagnetic misc low temperature magnetic properties misc pre-exponential frequency factor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Chinese science bulletin |
hierarchy_parent_id |
341897809 |
dewey-tens |
500 - Science |
hierarchy_top_title |
Chinese science bulletin |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)341897809 (DE-600)2069521-4 |
title |
Low-temperature magnetic properties of horse spleen ferritin |
ctrlnum |
(DE-627)SPR019587589 (SPR)s11434-010-4025-3-e |
title_full |
Low-temperature magnetic properties of horse spleen ferritin |
author_sort |
Tian, LanXiang |
journal |
Chinese science bulletin |
journalStr |
Chinese science bulletin |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
3174 |
author_browse |
Tian, LanXiang Cao, ChangQian Liu, QingSong Pan, YongXin |
container_volume |
55 |
class |
500 ASE 30.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Tian, LanXiang |
doi_str_mv |
10.1007/s11434-010-4025-3 |
dewey-full |
500 |
author2-role |
verfasserin |
title_sort |
low-temperature magnetic properties of horse spleen ferritin |
title_auth |
Low-temperature magnetic properties of horse spleen ferritin |
abstract |
Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. |
abstractGer |
Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. |
abstract_unstemmed |
Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_266 GBV_ILN_285 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2055 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4313 GBV_ILN_4328 GBV_ILN_4333 |
container_issue |
27-28 |
title_short |
Low-temperature magnetic properties of horse spleen ferritin |
url |
https://dx.doi.org/10.1007/s11434-010-4025-3 |
remote_bool |
true |
author2 |
Cao, ChangQian Liu, QingSong Pan, YongXin |
author2Str |
Cao, ChangQian Liu, QingSong Pan, YongXin |
ppnlink |
341897809 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11434-010-4025-3 |
up_date |
2024-07-04T02:13:32.994Z |
_version_ |
1803612809326493696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019587589</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111065856.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11434-010-4025-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019587589</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11434-010-4025-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">30.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tian, LanXiang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Low-temperature magnetic properties of horse spleen ferritin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The magnetic properties of the antiferromagnetic cores in ferritin are of importance in the construction and improvement of ferritin-based magnetic resonance imaging systems and their application to environmental magnetism. In this study, we carry out integrated magnetic and transmission electron microscopy analyses of horse spleen ferritin (HoSF) to understand the relationships between the magnetic behavior of HoSF and temperature, applied field and grain-size distributions. The R-value from the Wohlfarth-Cisowski test for the investigated sample at 5 K was 0.46, indicating very weak magnetostatic interactions among the nanoparticles of HoSF. The nanoparticles of HoSF show superparamagnetic properties at room temperature, while below the blocking temperature of Tb ≈ 12 K it has a net magnetic moment that comes from the uncompensated spins of the nanoparticle surface or spin-canting. The thermal relaxation process of HoSF follows the Néel-Arrhenius expression. From low-temperature AC susceptibility data, we calculated the effective magnetic anisotropy energy Ea=(5.52±0.16)×$ 10^{−21} $ J; the effective magnetic anisotropy energy constant Keff =(4.65±0.14)×$ 10^{4} $ J/$ m^{3} $ and the pre-exponential frequency factor f0=(4.52±2.93)×$ 10^{11} $ Hz. These values are useful in understanding the magnetic behavior of the antiferromagnetic nanoparticles and their potential application in biomedical technology.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">horse spleen ferritin</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">superparamagnetic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">low temperature magnetic properties</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">pre-exponential frequency factor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, ChangQian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, QingSong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, YongXin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Chinese science bulletin</subfield><subfield code="d">Beijing, China : Chinese Acad. of Sciences, 1997</subfield><subfield code="g">55(2010), 27-28 vom: Sept., Seite 3174-3180</subfield><subfield code="w">(DE-627)341897809</subfield><subfield code="w">(DE-600)2069521-4</subfield><subfield code="x">1861-9541</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:27-28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3174-3180</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11434-010-4025-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_266</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">30.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2010</subfield><subfield code="e">27-28</subfield><subfield code="c">09</subfield><subfield code="h">3174-3180</subfield></datafield></record></collection>
|
score |
7.4019346 |