Biomimetic nanosystems and novel composite nanobiomaterials
Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanis...
Ausführliche Beschreibung
Autor*in: |
Khomutov, G. B. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Biophysics - Moscow : Maik Nauka/Interperiodica, 1995, 56(2011), 5 vom: Okt., Seite 843-857 |
---|---|
Übergeordnetes Werk: |
volume:56 ; year:2011 ; number:5 ; month:10 ; pages:843-857 |
Links: |
---|
DOI / URN: |
10.1134/S0006350911050083 |
---|
Katalog-ID: |
SPR019634765 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019634765 | ||
003 | DE-627 | ||
005 | 20230519171118.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S0006350911050083 |2 doi | |
035 | |a (DE-627)SPR019634765 | ||
035 | |a (SPR)S0006350911050083-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 530 |q ASE |
084 | |a 42.12 |2 bkl | ||
100 | 1 | |a Khomutov, G. B. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Biomimetic nanosystems and novel composite nanobiomaterials |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. | ||
650 | 4 | |a biomimetic nanosystems |7 (dpeaa)DE-He213 | |
650 | 4 | |a nanostructures |7 (dpeaa)DE-He213 | |
650 | 4 | |a Langmuir-Blodgett film |7 (dpeaa)DE-He213 | |
650 | 4 | |a monolayer |7 (dpeaa)DE-He213 | |
650 | 4 | |a surface |7 (dpeaa)DE-He213 | |
650 | 4 | |a nanocomposites |7 (dpeaa)DE-He213 | |
650 | 4 | |a nanofilm material |7 (dpeaa)DE-He213 | |
650 | 4 | |a polycations |7 (dpeaa)DE-He213 | |
650 | 4 | |a polyamines |7 (dpeaa)DE-He213 | |
650 | 4 | |a hyaluronic acid |7 (dpeaa)DE-He213 | |
650 | 4 | |a polycomplexes |7 (dpeaa)DE-He213 | |
650 | 4 | |a biocolloids |7 (dpeaa)DE-He213 | |
650 | 4 | |a thylakoids |7 (dpeaa)DE-He213 | |
650 | 4 | |a nanoparticles |7 (dpeaa)DE-He213 | |
650 | 4 | |a clusters |7 (dpeaa)DE-He213 | |
650 | 4 | |a synthesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a noble metals |7 (dpeaa)DE-He213 | |
650 | 4 | |a magnetite |7 (dpeaa)DE-He213 | |
650 | 4 | |a magnetic properties |7 (dpeaa)DE-He213 | |
650 | 4 | |a innovations |7 (dpeaa)DE-He213 | |
773 | 0 | 8 | |i Enthalten in |t Biophysics |d Moscow : Maik Nauka/Interperiodica, 1995 |g 56(2011), 5 vom: Okt., Seite 843-857 |w (DE-627)32063955X |w (DE-600)2024886-6 |x 1555-6654 |7 nnns |
773 | 1 | 8 | |g volume:56 |g year:2011 |g number:5 |g month:10 |g pages:843-857 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S0006350911050083 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 42.12 |q ASE |
951 | |a AR | ||
952 | |d 56 |j 2011 |e 5 |c 10 |h 843-857 |
author_variant |
g b k gb gbk |
---|---|
matchkey_str |
article:15556654:2011----::immtcaoytmadoecmoie |
hierarchy_sort_str |
2011 |
bklnumber |
42.12 |
publishDate |
2011 |
allfields |
10.1134/S0006350911050083 doi (DE-627)SPR019634765 (SPR)S0006350911050083-e DE-627 ger DE-627 rakwb eng 570 530 ASE 42.12 bkl Khomutov, G. B. verfasserin aut Biomimetic nanosystems and novel composite nanobiomaterials 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. biomimetic nanosystems (dpeaa)DE-He213 nanostructures (dpeaa)DE-He213 Langmuir-Blodgett film (dpeaa)DE-He213 monolayer (dpeaa)DE-He213 surface (dpeaa)DE-He213 nanocomposites (dpeaa)DE-He213 nanofilm material (dpeaa)DE-He213 polycations (dpeaa)DE-He213 polyamines (dpeaa)DE-He213 hyaluronic acid (dpeaa)DE-He213 polycomplexes (dpeaa)DE-He213 biocolloids (dpeaa)DE-He213 thylakoids (dpeaa)DE-He213 nanoparticles (dpeaa)DE-He213 clusters (dpeaa)DE-He213 synthesis (dpeaa)DE-He213 noble metals (dpeaa)DE-He213 magnetite (dpeaa)DE-He213 magnetic properties (dpeaa)DE-He213 innovations (dpeaa)DE-He213 Enthalten in Biophysics Moscow : Maik Nauka/Interperiodica, 1995 56(2011), 5 vom: Okt., Seite 843-857 (DE-627)32063955X (DE-600)2024886-6 1555-6654 nnns volume:56 year:2011 number:5 month:10 pages:843-857 https://dx.doi.org/10.1134/S0006350911050083 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.12 ASE AR 56 2011 5 10 843-857 |
spelling |
10.1134/S0006350911050083 doi (DE-627)SPR019634765 (SPR)S0006350911050083-e DE-627 ger DE-627 rakwb eng 570 530 ASE 42.12 bkl Khomutov, G. B. verfasserin aut Biomimetic nanosystems and novel composite nanobiomaterials 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. biomimetic nanosystems (dpeaa)DE-He213 nanostructures (dpeaa)DE-He213 Langmuir-Blodgett film (dpeaa)DE-He213 monolayer (dpeaa)DE-He213 surface (dpeaa)DE-He213 nanocomposites (dpeaa)DE-He213 nanofilm material (dpeaa)DE-He213 polycations (dpeaa)DE-He213 polyamines (dpeaa)DE-He213 hyaluronic acid (dpeaa)DE-He213 polycomplexes (dpeaa)DE-He213 biocolloids (dpeaa)DE-He213 thylakoids (dpeaa)DE-He213 nanoparticles (dpeaa)DE-He213 clusters (dpeaa)DE-He213 synthesis (dpeaa)DE-He213 noble metals (dpeaa)DE-He213 magnetite (dpeaa)DE-He213 magnetic properties (dpeaa)DE-He213 innovations (dpeaa)DE-He213 Enthalten in Biophysics Moscow : Maik Nauka/Interperiodica, 1995 56(2011), 5 vom: Okt., Seite 843-857 (DE-627)32063955X (DE-600)2024886-6 1555-6654 nnns volume:56 year:2011 number:5 month:10 pages:843-857 https://dx.doi.org/10.1134/S0006350911050083 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.12 ASE AR 56 2011 5 10 843-857 |
allfields_unstemmed |
10.1134/S0006350911050083 doi (DE-627)SPR019634765 (SPR)S0006350911050083-e DE-627 ger DE-627 rakwb eng 570 530 ASE 42.12 bkl Khomutov, G. B. verfasserin aut Biomimetic nanosystems and novel composite nanobiomaterials 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. biomimetic nanosystems (dpeaa)DE-He213 nanostructures (dpeaa)DE-He213 Langmuir-Blodgett film (dpeaa)DE-He213 monolayer (dpeaa)DE-He213 surface (dpeaa)DE-He213 nanocomposites (dpeaa)DE-He213 nanofilm material (dpeaa)DE-He213 polycations (dpeaa)DE-He213 polyamines (dpeaa)DE-He213 hyaluronic acid (dpeaa)DE-He213 polycomplexes (dpeaa)DE-He213 biocolloids (dpeaa)DE-He213 thylakoids (dpeaa)DE-He213 nanoparticles (dpeaa)DE-He213 clusters (dpeaa)DE-He213 synthesis (dpeaa)DE-He213 noble metals (dpeaa)DE-He213 magnetite (dpeaa)DE-He213 magnetic properties (dpeaa)DE-He213 innovations (dpeaa)DE-He213 Enthalten in Biophysics Moscow : Maik Nauka/Interperiodica, 1995 56(2011), 5 vom: Okt., Seite 843-857 (DE-627)32063955X (DE-600)2024886-6 1555-6654 nnns volume:56 year:2011 number:5 month:10 pages:843-857 https://dx.doi.org/10.1134/S0006350911050083 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.12 ASE AR 56 2011 5 10 843-857 |
allfieldsGer |
10.1134/S0006350911050083 doi (DE-627)SPR019634765 (SPR)S0006350911050083-e DE-627 ger DE-627 rakwb eng 570 530 ASE 42.12 bkl Khomutov, G. B. verfasserin aut Biomimetic nanosystems and novel composite nanobiomaterials 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. biomimetic nanosystems (dpeaa)DE-He213 nanostructures (dpeaa)DE-He213 Langmuir-Blodgett film (dpeaa)DE-He213 monolayer (dpeaa)DE-He213 surface (dpeaa)DE-He213 nanocomposites (dpeaa)DE-He213 nanofilm material (dpeaa)DE-He213 polycations (dpeaa)DE-He213 polyamines (dpeaa)DE-He213 hyaluronic acid (dpeaa)DE-He213 polycomplexes (dpeaa)DE-He213 biocolloids (dpeaa)DE-He213 thylakoids (dpeaa)DE-He213 nanoparticles (dpeaa)DE-He213 clusters (dpeaa)DE-He213 synthesis (dpeaa)DE-He213 noble metals (dpeaa)DE-He213 magnetite (dpeaa)DE-He213 magnetic properties (dpeaa)DE-He213 innovations (dpeaa)DE-He213 Enthalten in Biophysics Moscow : Maik Nauka/Interperiodica, 1995 56(2011), 5 vom: Okt., Seite 843-857 (DE-627)32063955X (DE-600)2024886-6 1555-6654 nnns volume:56 year:2011 number:5 month:10 pages:843-857 https://dx.doi.org/10.1134/S0006350911050083 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.12 ASE AR 56 2011 5 10 843-857 |
allfieldsSound |
10.1134/S0006350911050083 doi (DE-627)SPR019634765 (SPR)S0006350911050083-e DE-627 ger DE-627 rakwb eng 570 530 ASE 42.12 bkl Khomutov, G. B. verfasserin aut Biomimetic nanosystems and novel composite nanobiomaterials 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. biomimetic nanosystems (dpeaa)DE-He213 nanostructures (dpeaa)DE-He213 Langmuir-Blodgett film (dpeaa)DE-He213 monolayer (dpeaa)DE-He213 surface (dpeaa)DE-He213 nanocomposites (dpeaa)DE-He213 nanofilm material (dpeaa)DE-He213 polycations (dpeaa)DE-He213 polyamines (dpeaa)DE-He213 hyaluronic acid (dpeaa)DE-He213 polycomplexes (dpeaa)DE-He213 biocolloids (dpeaa)DE-He213 thylakoids (dpeaa)DE-He213 nanoparticles (dpeaa)DE-He213 clusters (dpeaa)DE-He213 synthesis (dpeaa)DE-He213 noble metals (dpeaa)DE-He213 magnetite (dpeaa)DE-He213 magnetic properties (dpeaa)DE-He213 innovations (dpeaa)DE-He213 Enthalten in Biophysics Moscow : Maik Nauka/Interperiodica, 1995 56(2011), 5 vom: Okt., Seite 843-857 (DE-627)32063955X (DE-600)2024886-6 1555-6654 nnns volume:56 year:2011 number:5 month:10 pages:843-857 https://dx.doi.org/10.1134/S0006350911050083 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 42.12 ASE AR 56 2011 5 10 843-857 |
language |
English |
source |
Enthalten in Biophysics 56(2011), 5 vom: Okt., Seite 843-857 volume:56 year:2011 number:5 month:10 pages:843-857 |
sourceStr |
Enthalten in Biophysics 56(2011), 5 vom: Okt., Seite 843-857 volume:56 year:2011 number:5 month:10 pages:843-857 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
biomimetic nanosystems nanostructures Langmuir-Blodgett film monolayer surface nanocomposites nanofilm material polycations polyamines hyaluronic acid polycomplexes biocolloids thylakoids nanoparticles clusters synthesis noble metals magnetite magnetic properties innovations |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Biophysics |
authorswithroles_txt_mv |
Khomutov, G. B. @@aut@@ |
publishDateDaySort_date |
2011-10-01T00:00:00Z |
hierarchy_top_id |
32063955X |
dewey-sort |
3570 |
id |
SPR019634765 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019634765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519171118.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0006350911050083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019634765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S0006350911050083-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khomutov, G. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomimetic nanosystems and novel composite nanobiomaterials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomimetic nanosystems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langmuir-Blodgett film</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monolayer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanocomposites</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofilm material</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polycations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polyamines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyaluronic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polycomplexes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biocolloids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thylakoids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clusters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noble metals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic properties</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">innovations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biophysics</subfield><subfield code="d">Moscow : Maik Nauka/Interperiodica, 1995</subfield><subfield code="g">56(2011), 5 vom: Okt., Seite 843-857</subfield><subfield code="w">(DE-627)32063955X</subfield><subfield code="w">(DE-600)2024886-6</subfield><subfield code="x">1555-6654</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:843-857</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S0006350911050083</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2011</subfield><subfield code="e">5</subfield><subfield code="c">10</subfield><subfield code="h">843-857</subfield></datafield></record></collection>
|
author |
Khomutov, G. B. |
spellingShingle |
Khomutov, G. B. ddc 570 bkl 42.12 misc biomimetic nanosystems misc nanostructures misc Langmuir-Blodgett film misc monolayer misc surface misc nanocomposites misc nanofilm material misc polycations misc polyamines misc hyaluronic acid misc polycomplexes misc biocolloids misc thylakoids misc nanoparticles misc clusters misc synthesis misc noble metals misc magnetite misc magnetic properties misc innovations Biomimetic nanosystems and novel composite nanobiomaterials |
authorStr |
Khomutov, G. B. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32063955X |
format |
electronic Article |
dewey-ones |
570 - Life sciences; biology 530 - Physics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1555-6654 |
topic_title |
570 530 ASE 42.12 bkl Biomimetic nanosystems and novel composite nanobiomaterials biomimetic nanosystems (dpeaa)DE-He213 nanostructures (dpeaa)DE-He213 Langmuir-Blodgett film (dpeaa)DE-He213 monolayer (dpeaa)DE-He213 surface (dpeaa)DE-He213 nanocomposites (dpeaa)DE-He213 nanofilm material (dpeaa)DE-He213 polycations (dpeaa)DE-He213 polyamines (dpeaa)DE-He213 hyaluronic acid (dpeaa)DE-He213 polycomplexes (dpeaa)DE-He213 biocolloids (dpeaa)DE-He213 thylakoids (dpeaa)DE-He213 nanoparticles (dpeaa)DE-He213 clusters (dpeaa)DE-He213 synthesis (dpeaa)DE-He213 noble metals (dpeaa)DE-He213 magnetite (dpeaa)DE-He213 magnetic properties (dpeaa)DE-He213 innovations (dpeaa)DE-He213 |
topic |
ddc 570 bkl 42.12 misc biomimetic nanosystems misc nanostructures misc Langmuir-Blodgett film misc monolayer misc surface misc nanocomposites misc nanofilm material misc polycations misc polyamines misc hyaluronic acid misc polycomplexes misc biocolloids misc thylakoids misc nanoparticles misc clusters misc synthesis misc noble metals misc magnetite misc magnetic properties misc innovations |
topic_unstemmed |
ddc 570 bkl 42.12 misc biomimetic nanosystems misc nanostructures misc Langmuir-Blodgett film misc monolayer misc surface misc nanocomposites misc nanofilm material misc polycations misc polyamines misc hyaluronic acid misc polycomplexes misc biocolloids misc thylakoids misc nanoparticles misc clusters misc synthesis misc noble metals misc magnetite misc magnetic properties misc innovations |
topic_browse |
ddc 570 bkl 42.12 misc biomimetic nanosystems misc nanostructures misc Langmuir-Blodgett film misc monolayer misc surface misc nanocomposites misc nanofilm material misc polycations misc polyamines misc hyaluronic acid misc polycomplexes misc biocolloids misc thylakoids misc nanoparticles misc clusters misc synthesis misc noble metals misc magnetite misc magnetic properties misc innovations |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Biophysics |
hierarchy_parent_id |
32063955X |
dewey-tens |
570 - Life sciences; biology 530 - Physics |
hierarchy_top_title |
Biophysics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32063955X (DE-600)2024886-6 |
title |
Biomimetic nanosystems and novel composite nanobiomaterials |
ctrlnum |
(DE-627)SPR019634765 (SPR)S0006350911050083-e |
title_full |
Biomimetic nanosystems and novel composite nanobiomaterials |
author_sort |
Khomutov, G. B. |
journal |
Biophysics |
journalStr |
Biophysics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
843 |
author_browse |
Khomutov, G. B. |
container_volume |
56 |
class |
570 530 ASE 42.12 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Khomutov, G. B. |
doi_str_mv |
10.1134/S0006350911050083 |
dewey-full |
570 530 |
title_sort |
biomimetic nanosystems and novel composite nanobiomaterials |
title_auth |
Biomimetic nanosystems and novel composite nanobiomaterials |
abstract |
Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. |
abstractGer |
Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. |
abstract_unstemmed |
Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4012 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Biomimetic nanosystems and novel composite nanobiomaterials |
url |
https://dx.doi.org/10.1134/S0006350911050083 |
remote_bool |
true |
ppnlink |
32063955X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0006350911050083 |
up_date |
2024-07-04T02:23:47.586Z |
_version_ |
1803613453775011840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019634765</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519171118.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0006350911050083</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019634765</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S0006350911050083-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">42.12</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khomutov, G. B.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biomimetic nanosystems and novel composite nanobiomaterials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Biophysicochemical approaches to the solution of nanotechnology problems associated with the design of functional biomimetic nanosystems, hybrid and composite nanobiomaterials and study of their structure-function relationships. The results of studies concerned with physicochemical mechanisms of the formation of organized biomimetic nanostructures and bioinorganic nanomaterials in systems involving a bulky liquid phase and the interface (gas-liquid, solid-liquid, liquid-liquid)during the synthesis and structure formation with the participation of the components of colloid systems, inorganic nanoparticles of various composition and clusters of metals, surfactants, polyelectrolytes and their complexes are discussed. In the development of the methods for the formation of composite bioinorganic nanosystems containing inorganic nanocomponents, two major approaches were used: adsorption and incorporation into the biomolecular matrix or colloid system of presynthesized inorganic nanoparticles, as well as the synthesis of the inorganic nanophase immediately in the biomolecular system. The methods of obtaining biomaterials and nanosystems are based on the principles of biomimetics, biomineralization, self-assembly and self-organization, combination and integration of a number of synthetic and physicochemical methods (physical and chemical adsorption, Langmuir technique, the formation of polycomplexes, chemical linking, competitive interactions, and substitution of ligands in supramolecular and coordination complexes) and nanocomponents of different nature. In particular, a novel approach to the preparation of highly organized nanofilm materials was developed, which is based on the effect of self-assembly and self-organization of colloid nanoparticles during the formation of their complexes with polyfunctional biogenic ligands in the volume of the liquid phase in the absence of any surfaces and interfaces. The physical and chemical factors responsible for the formation of structurally ordered biomolecular and composite nanosystems including nano-sized components of different nature and the possibilities to control the composition, structure, and properties of resulting nanomaterials and nanosystems are discussed. The experimental methods and approaches developed may be useful in studies of structure-property relationships and basic mechanisms of structural organization and transformation at the nanoscales level in biological, artificial, and hybrid nanosystems. The problems of practical application of the synthetic methods and the corresponding nanomaterials are discussed.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biomimetic nanosystems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanostructures</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Langmuir-Blodgett film</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">monolayer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">surface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanocomposites</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanofilm material</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polycations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polyamines</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">hyaluronic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polycomplexes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">biocolloids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thylakoids</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nanoparticles</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">clusters</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">synthesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">noble metals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetite</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetic properties</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">innovations</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Biophysics</subfield><subfield code="d">Moscow : Maik Nauka/Interperiodica, 1995</subfield><subfield code="g">56(2011), 5 vom: Okt., Seite 843-857</subfield><subfield code="w">(DE-627)32063955X</subfield><subfield code="w">(DE-600)2024886-6</subfield><subfield code="x">1555-6654</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:56</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:843-857</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S0006350911050083</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">42.12</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">56</subfield><subfield code="j">2011</subfield><subfield code="e">5</subfield><subfield code="c">10</subfield><subfield code="h">843-857</subfield></datafield></record></collection>
|
score |
7.400985 |