Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification
Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency,...
Ausführliche Beschreibung
Autor*in: |
Sun, Na [verfasserIn] Zhou, Yajian [verfasserIn] Yang, Yixian [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of electrical and electronic engineering in China - Berlin : Heidelberg : Springer, 2006, 5(2010), 4 vom: 21. Juli, Seite 488-492 |
---|---|
Übergeordnetes Werk: |
volume:5 ; year:2010 ; number:4 ; day:21 ; month:07 ; pages:488-492 |
Links: |
---|
DOI / URN: |
10.1007/s11460-010-0094-y |
---|
Katalog-ID: |
SPR019849559 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019849559 | ||
003 | DE-627 | ||
005 | 20220111071949.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11460-010-0094-y |2 doi | |
035 | |a (DE-627)SPR019849559 | ||
035 | |a (SPR)s11460-010-0094-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 620 |q ASE |
084 | |a 53.00 |2 bkl | ||
100 | 1 | |a Sun, Na |e verfasserin |4 aut | |
245 | 1 | 0 | |a Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. | ||
650 | 4 | |a polyspectral kernel |7 (dpeaa)DE-He213 | |
650 | 4 | |a support vector machine (SVM) |7 (dpeaa)DE-He213 | |
650 | 4 | |a neighborhood rough set |7 (dpeaa)DE-He213 | |
650 | 4 | |a weighted feature set |7 (dpeaa)DE-He213 | |
650 | 4 | |a weighted kernel |7 (dpeaa)DE-He213 | |
700 | 1 | |a Zhou, Yajian |e verfasserin |4 aut | |
700 | 1 | |a Yang, Yixian |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of electrical and electronic engineering in China |d Berlin : Heidelberg : Springer, 2006 |g 5(2010), 4 vom: 21. Juli, Seite 488-492 |w (DE-627)510464297 |w (DE-600)2230606-7 |x 1673-3584 |7 nnns |
773 | 1 | 8 | |g volume:5 |g year:2010 |g number:4 |g day:21 |g month:07 |g pages:488-492 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11460-010-0094-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2190 | ||
936 | b | k | |a 53.00 |q ASE |
951 | |a AR | ||
952 | |d 5 |j 2010 |e 4 |b 21 |c 07 |h 488-492 |
author_variant |
n s ns y z yz y y yy |
---|---|
matchkey_str |
article:16733584:2010----::ossecowihefaueeadoypcrlenliidvdacmuia |
hierarchy_sort_str |
2010 |
bklnumber |
53.00 |
publishDate |
2010 |
allfields |
10.1007/s11460-010-0094-y doi (DE-627)SPR019849559 (SPR)s11460-010-0094-y-e DE-627 ger DE-627 rakwb eng 620 ASE 53.00 bkl Sun, Na verfasserin aut Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. polyspectral kernel (dpeaa)DE-He213 support vector machine (SVM) (dpeaa)DE-He213 neighborhood rough set (dpeaa)DE-He213 weighted feature set (dpeaa)DE-He213 weighted kernel (dpeaa)DE-He213 Zhou, Yajian verfasserin aut Yang, Yixian verfasserin aut Enthalten in Frontiers of electrical and electronic engineering in China Berlin : Heidelberg : Springer, 2006 5(2010), 4 vom: 21. Juli, Seite 488-492 (DE-627)510464297 (DE-600)2230606-7 1673-3584 nnns volume:5 year:2010 number:4 day:21 month:07 pages:488-492 https://dx.doi.org/10.1007/s11460-010-0094-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2190 53.00 ASE AR 5 2010 4 21 07 488-492 |
spelling |
10.1007/s11460-010-0094-y doi (DE-627)SPR019849559 (SPR)s11460-010-0094-y-e DE-627 ger DE-627 rakwb eng 620 ASE 53.00 bkl Sun, Na verfasserin aut Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. polyspectral kernel (dpeaa)DE-He213 support vector machine (SVM) (dpeaa)DE-He213 neighborhood rough set (dpeaa)DE-He213 weighted feature set (dpeaa)DE-He213 weighted kernel (dpeaa)DE-He213 Zhou, Yajian verfasserin aut Yang, Yixian verfasserin aut Enthalten in Frontiers of electrical and electronic engineering in China Berlin : Heidelberg : Springer, 2006 5(2010), 4 vom: 21. Juli, Seite 488-492 (DE-627)510464297 (DE-600)2230606-7 1673-3584 nnns volume:5 year:2010 number:4 day:21 month:07 pages:488-492 https://dx.doi.org/10.1007/s11460-010-0094-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2190 53.00 ASE AR 5 2010 4 21 07 488-492 |
allfields_unstemmed |
10.1007/s11460-010-0094-y doi (DE-627)SPR019849559 (SPR)s11460-010-0094-y-e DE-627 ger DE-627 rakwb eng 620 ASE 53.00 bkl Sun, Na verfasserin aut Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. polyspectral kernel (dpeaa)DE-He213 support vector machine (SVM) (dpeaa)DE-He213 neighborhood rough set (dpeaa)DE-He213 weighted feature set (dpeaa)DE-He213 weighted kernel (dpeaa)DE-He213 Zhou, Yajian verfasserin aut Yang, Yixian verfasserin aut Enthalten in Frontiers of electrical and electronic engineering in China Berlin : Heidelberg : Springer, 2006 5(2010), 4 vom: 21. Juli, Seite 488-492 (DE-627)510464297 (DE-600)2230606-7 1673-3584 nnns volume:5 year:2010 number:4 day:21 month:07 pages:488-492 https://dx.doi.org/10.1007/s11460-010-0094-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2190 53.00 ASE AR 5 2010 4 21 07 488-492 |
allfieldsGer |
10.1007/s11460-010-0094-y doi (DE-627)SPR019849559 (SPR)s11460-010-0094-y-e DE-627 ger DE-627 rakwb eng 620 ASE 53.00 bkl Sun, Na verfasserin aut Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. polyspectral kernel (dpeaa)DE-He213 support vector machine (SVM) (dpeaa)DE-He213 neighborhood rough set (dpeaa)DE-He213 weighted feature set (dpeaa)DE-He213 weighted kernel (dpeaa)DE-He213 Zhou, Yajian verfasserin aut Yang, Yixian verfasserin aut Enthalten in Frontiers of electrical and electronic engineering in China Berlin : Heidelberg : Springer, 2006 5(2010), 4 vom: 21. Juli, Seite 488-492 (DE-627)510464297 (DE-600)2230606-7 1673-3584 nnns volume:5 year:2010 number:4 day:21 month:07 pages:488-492 https://dx.doi.org/10.1007/s11460-010-0094-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2190 53.00 ASE AR 5 2010 4 21 07 488-492 |
allfieldsSound |
10.1007/s11460-010-0094-y doi (DE-627)SPR019849559 (SPR)s11460-010-0094-y-e DE-627 ger DE-627 rakwb eng 620 ASE 53.00 bkl Sun, Na verfasserin aut Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. polyspectral kernel (dpeaa)DE-He213 support vector machine (SVM) (dpeaa)DE-He213 neighborhood rough set (dpeaa)DE-He213 weighted feature set (dpeaa)DE-He213 weighted kernel (dpeaa)DE-He213 Zhou, Yajian verfasserin aut Yang, Yixian verfasserin aut Enthalten in Frontiers of electrical and electronic engineering in China Berlin : Heidelberg : Springer, 2006 5(2010), 4 vom: 21. Juli, Seite 488-492 (DE-627)510464297 (DE-600)2230606-7 1673-3584 nnns volume:5 year:2010 number:4 day:21 month:07 pages:488-492 https://dx.doi.org/10.1007/s11460-010-0094-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2190 53.00 ASE AR 5 2010 4 21 07 488-492 |
language |
English |
source |
Enthalten in Frontiers of electrical and electronic engineering in China 5(2010), 4 vom: 21. Juli, Seite 488-492 volume:5 year:2010 number:4 day:21 month:07 pages:488-492 |
sourceStr |
Enthalten in Frontiers of electrical and electronic engineering in China 5(2010), 4 vom: 21. Juli, Seite 488-492 volume:5 year:2010 number:4 day:21 month:07 pages:488-492 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
polyspectral kernel support vector machine (SVM) neighborhood rough set weighted feature set weighted kernel |
dewey-raw |
620 |
isfreeaccess_bool |
false |
container_title |
Frontiers of electrical and electronic engineering in China |
authorswithroles_txt_mv |
Sun, Na @@aut@@ Zhou, Yajian @@aut@@ Yang, Yixian @@aut@@ |
publishDateDaySort_date |
2010-07-21T00:00:00Z |
hierarchy_top_id |
510464297 |
dewey-sort |
3620 |
id |
SPR019849559 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019849559</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111071949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11460-010-0094-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019849559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11460-010-0094-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Na</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polyspectral kernel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">support vector machine (SVM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neighborhood rough set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted feature set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted kernel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yajian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yixian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of electrical and electronic engineering in China</subfield><subfield code="d">Berlin : Heidelberg : Springer, 2006</subfield><subfield code="g">5(2010), 4 vom: 21. Juli, Seite 488-492</subfield><subfield code="w">(DE-627)510464297</subfield><subfield code="w">(DE-600)2230606-7</subfield><subfield code="x">1673-3584</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:4</subfield><subfield code="g">day:21</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:488-492</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11460-010-0094-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2010</subfield><subfield code="e">4</subfield><subfield code="b">21</subfield><subfield code="c">07</subfield><subfield code="h">488-492</subfield></datafield></record></collection>
|
author |
Sun, Na |
spellingShingle |
Sun, Na ddc 620 bkl 53.00 misc polyspectral kernel misc support vector machine (SVM) misc neighborhood rough set misc weighted feature set misc weighted kernel Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
authorStr |
Sun, Na |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)510464297 |
format |
electronic Article |
dewey-ones |
620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1673-3584 |
topic_title |
620 ASE 53.00 bkl Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification polyspectral kernel (dpeaa)DE-He213 support vector machine (SVM) (dpeaa)DE-He213 neighborhood rough set (dpeaa)DE-He213 weighted feature set (dpeaa)DE-He213 weighted kernel (dpeaa)DE-He213 |
topic |
ddc 620 bkl 53.00 misc polyspectral kernel misc support vector machine (SVM) misc neighborhood rough set misc weighted feature set misc weighted kernel |
topic_unstemmed |
ddc 620 bkl 53.00 misc polyspectral kernel misc support vector machine (SVM) misc neighborhood rough set misc weighted feature set misc weighted kernel |
topic_browse |
ddc 620 bkl 53.00 misc polyspectral kernel misc support vector machine (SVM) misc neighborhood rough set misc weighted feature set misc weighted kernel |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of electrical and electronic engineering in China |
hierarchy_parent_id |
510464297 |
dewey-tens |
620 - Engineering |
hierarchy_top_title |
Frontiers of electrical and electronic engineering in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)510464297 (DE-600)2230606-7 |
title |
Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
ctrlnum |
(DE-627)SPR019849559 (SPR)s11460-010-0094-y-e |
title_full |
Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
author_sort |
Sun, Na |
journal |
Frontiers of electrical and electronic engineering in China |
journalStr |
Frontiers of electrical and electronic engineering in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
488 |
author_browse |
Sun, Na Zhou, Yajian Yang, Yixian |
container_volume |
5 |
class |
620 ASE 53.00 bkl |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Na |
doi_str_mv |
10.1007/s11460-010-0094-y |
dewey-full |
620 |
author2-role |
verfasserin |
title_sort |
consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
title_auth |
Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
abstract |
Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. |
abstractGer |
Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. |
abstract_unstemmed |
Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_110 GBV_ILN_120 GBV_ILN_161 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2190 |
container_issue |
4 |
title_short |
Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification |
url |
https://dx.doi.org/10.1007/s11460-010-0094-y |
remote_bool |
true |
author2 |
Zhou, Yajian Yang, Yixian |
author2Str |
Zhou, Yajian Yang, Yixian |
ppnlink |
510464297 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11460-010-0094-y |
up_date |
2024-07-04T03:07:09.406Z |
_version_ |
1803616181970534400 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019849559</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111071949.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11460-010-0094-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019849559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11460-010-0094-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">53.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Na</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Consistency of weighted feature set and polyspectral kernels in individual communication transmitter identification</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper presents a method using support vector machine with polyspectral kernels for classification of individual transmitters. Then, the neighborhood-rough-set-based weighted feature set is proposed. The experiments of the algorithms mentioned above indicate that they have consistency, which raises a new weighted kernel. The experiment shows that better classification rate can be achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">polyspectral kernel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">support vector machine (SVM)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">neighborhood rough set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted feature set</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">weighted kernel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Yajian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yixian</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of electrical and electronic engineering in China</subfield><subfield code="d">Berlin : Heidelberg : Springer, 2006</subfield><subfield code="g">5(2010), 4 vom: 21. Juli, Seite 488-492</subfield><subfield code="w">(DE-627)510464297</subfield><subfield code="w">(DE-600)2230606-7</subfield><subfield code="x">1673-3584</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:5</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:4</subfield><subfield code="g">day:21</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:488-492</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11460-010-0094-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">53.00</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">5</subfield><subfield code="j">2010</subfield><subfield code="e">4</subfield><subfield code="b">21</subfield><subfield code="c">07</subfield><subfield code="h">488-492</subfield></datafield></record></collection>
|
score |
7.4008694 |