Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co
Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure...
Ausführliche Beschreibung
Autor*in: |
Li, Zhen [verfasserIn] Cao, Yi-Ming [verfasserIn] Wang, Yin [verfasserIn] Yang, Ya [verfasserIn] Xiang, Mao-Lin [verfasserIn] Yu, You-Shuang [verfasserIn] Kang, Bao-Juan [verfasserIn] Zhang, Jin-Cang [verfasserIn] Cao, Shi-Xun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of physics in China - Berlin : Heidelberg : Springer, 2006, 13(2018), 5 vom: 12. Sept. |
---|---|
Übergeordnetes Werk: |
volume:13 ; year:2018 ; number:5 ; day:12 ; month:09 |
Links: |
---|
DOI / URN: |
10.1007/s11467-018-0827-6 |
---|
Katalog-ID: |
SPR019882637 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR019882637 | ||
003 | DE-627 | ||
005 | 20220111072049.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11467-018-0827-6 |2 doi | |
035 | |a (DE-627)SPR019882637 | ||
035 | |a (SPR)s11467-018-0827-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q ASE |
100 | 1 | |a Li, Zhen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. | ||
650 | 4 | |a single crystal |7 (dpeaa)DE-He213 | |
650 | 4 | |a magnetoelectric coupling |7 (dpeaa)DE-He213 | |
650 | 4 | |a substitution |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cao, Yi-Ming |e verfasserin |4 aut | |
700 | 1 | |a Wang, Yin |e verfasserin |4 aut | |
700 | 1 | |a Yang, Ya |e verfasserin |4 aut | |
700 | 1 | |a Xiang, Mao-Lin |e verfasserin |4 aut | |
700 | 1 | |a Yu, You-Shuang |e verfasserin |4 aut | |
700 | 1 | |a Kang, Bao-Juan |e verfasserin |4 aut | |
700 | 1 | |a Zhang, Jin-Cang |e verfasserin |4 aut | |
700 | 1 | |a Cao, Shi-Xun |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of physics in China |d Berlin : Heidelberg : Springer, 2006 |g 13(2018), 5 vom: 12. Sept. |w (DE-627)509758428 |w (DE-600)2228431-X |x 1673-3606 |7 nnns |
773 | 1 | 8 | |g volume:13 |g year:2018 |g number:5 |g day:12 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11467-018-0827-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
951 | |a AR | ||
952 | |d 13 |j 2018 |e 5 |b 12 |c 09 |
author_variant |
z l zl y m c ymc y w yw y y yy m l x mlx y s y ysy b j k bjk j c z jcz s x c sxc |
---|---|
matchkey_str |
article:16733606:2018----::nacnteanteeticulnoc_n_o90bs |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s11467-018-0827-6 doi (DE-627)SPR019882637 (SPR)s11467-018-0827-6-e DE-627 ger DE-627 rakwb eng 530 ASE Li, Zhen verfasserin aut Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. single crystal (dpeaa)DE-He213 magnetoelectric coupling (dpeaa)DE-He213 substitution (dpeaa)DE-He213 Cao, Yi-Ming verfasserin aut Wang, Yin verfasserin aut Yang, Ya verfasserin aut Xiang, Mao-Lin verfasserin aut Yu, You-Shuang verfasserin aut Kang, Bao-Juan verfasserin aut Zhang, Jin-Cang verfasserin aut Cao, Shi-Xun verfasserin aut Enthalten in Frontiers of physics in China Berlin : Heidelberg : Springer, 2006 13(2018), 5 vom: 12. Sept. (DE-627)509758428 (DE-600)2228431-X 1673-3606 nnns volume:13 year:2018 number:5 day:12 month:09 https://dx.doi.org/10.1007/s11467-018-0827-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 13 2018 5 12 09 |
spelling |
10.1007/s11467-018-0827-6 doi (DE-627)SPR019882637 (SPR)s11467-018-0827-6-e DE-627 ger DE-627 rakwb eng 530 ASE Li, Zhen verfasserin aut Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. single crystal (dpeaa)DE-He213 magnetoelectric coupling (dpeaa)DE-He213 substitution (dpeaa)DE-He213 Cao, Yi-Ming verfasserin aut Wang, Yin verfasserin aut Yang, Ya verfasserin aut Xiang, Mao-Lin verfasserin aut Yu, You-Shuang verfasserin aut Kang, Bao-Juan verfasserin aut Zhang, Jin-Cang verfasserin aut Cao, Shi-Xun verfasserin aut Enthalten in Frontiers of physics in China Berlin : Heidelberg : Springer, 2006 13(2018), 5 vom: 12. Sept. (DE-627)509758428 (DE-600)2228431-X 1673-3606 nnns volume:13 year:2018 number:5 day:12 month:09 https://dx.doi.org/10.1007/s11467-018-0827-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 13 2018 5 12 09 |
allfields_unstemmed |
10.1007/s11467-018-0827-6 doi (DE-627)SPR019882637 (SPR)s11467-018-0827-6-e DE-627 ger DE-627 rakwb eng 530 ASE Li, Zhen verfasserin aut Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. single crystal (dpeaa)DE-He213 magnetoelectric coupling (dpeaa)DE-He213 substitution (dpeaa)DE-He213 Cao, Yi-Ming verfasserin aut Wang, Yin verfasserin aut Yang, Ya verfasserin aut Xiang, Mao-Lin verfasserin aut Yu, You-Shuang verfasserin aut Kang, Bao-Juan verfasserin aut Zhang, Jin-Cang verfasserin aut Cao, Shi-Xun verfasserin aut Enthalten in Frontiers of physics in China Berlin : Heidelberg : Springer, 2006 13(2018), 5 vom: 12. Sept. (DE-627)509758428 (DE-600)2228431-X 1673-3606 nnns volume:13 year:2018 number:5 day:12 month:09 https://dx.doi.org/10.1007/s11467-018-0827-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 13 2018 5 12 09 |
allfieldsGer |
10.1007/s11467-018-0827-6 doi (DE-627)SPR019882637 (SPR)s11467-018-0827-6-e DE-627 ger DE-627 rakwb eng 530 ASE Li, Zhen verfasserin aut Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. single crystal (dpeaa)DE-He213 magnetoelectric coupling (dpeaa)DE-He213 substitution (dpeaa)DE-He213 Cao, Yi-Ming verfasserin aut Wang, Yin verfasserin aut Yang, Ya verfasserin aut Xiang, Mao-Lin verfasserin aut Yu, You-Shuang verfasserin aut Kang, Bao-Juan verfasserin aut Zhang, Jin-Cang verfasserin aut Cao, Shi-Xun verfasserin aut Enthalten in Frontiers of physics in China Berlin : Heidelberg : Springer, 2006 13(2018), 5 vom: 12. Sept. (DE-627)509758428 (DE-600)2228431-X 1673-3606 nnns volume:13 year:2018 number:5 day:12 month:09 https://dx.doi.org/10.1007/s11467-018-0827-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 13 2018 5 12 09 |
allfieldsSound |
10.1007/s11467-018-0827-6 doi (DE-627)SPR019882637 (SPR)s11467-018-0827-6-e DE-627 ger DE-627 rakwb eng 530 ASE Li, Zhen verfasserin aut Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. single crystal (dpeaa)DE-He213 magnetoelectric coupling (dpeaa)DE-He213 substitution (dpeaa)DE-He213 Cao, Yi-Ming verfasserin aut Wang, Yin verfasserin aut Yang, Ya verfasserin aut Xiang, Mao-Lin verfasserin aut Yu, You-Shuang verfasserin aut Kang, Bao-Juan verfasserin aut Zhang, Jin-Cang verfasserin aut Cao, Shi-Xun verfasserin aut Enthalten in Frontiers of physics in China Berlin : Heidelberg : Springer, 2006 13(2018), 5 vom: 12. Sept. (DE-627)509758428 (DE-600)2228431-X 1673-3606 nnns volume:13 year:2018 number:5 day:12 month:09 https://dx.doi.org/10.1007/s11467-018-0827-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 AR 13 2018 5 12 09 |
language |
English |
source |
Enthalten in Frontiers of physics in China 13(2018), 5 vom: 12. Sept. volume:13 year:2018 number:5 day:12 month:09 |
sourceStr |
Enthalten in Frontiers of physics in China 13(2018), 5 vom: 12. Sept. volume:13 year:2018 number:5 day:12 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
single crystal magnetoelectric coupling substitution |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Frontiers of physics in China |
authorswithroles_txt_mv |
Li, Zhen @@aut@@ Cao, Yi-Ming @@aut@@ Wang, Yin @@aut@@ Yang, Ya @@aut@@ Xiang, Mao-Lin @@aut@@ Yu, You-Shuang @@aut@@ Kang, Bao-Juan @@aut@@ Zhang, Jin-Cang @@aut@@ Cao, Shi-Xun @@aut@@ |
publishDateDaySort_date |
2018-09-12T00:00:00Z |
hierarchy_top_id |
509758428 |
dewey-sort |
3530 |
id |
SPR019882637 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019882637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111072049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11467-018-0827-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019882637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11467-018-0827-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single crystal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoelectric coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">substitution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Yi-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Mao-Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, You-Shuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Bao-Juan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jin-Cang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Shi-Xun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of physics in China</subfield><subfield code="d">Berlin : Heidelberg : Springer, 2006</subfield><subfield code="g">13(2018), 5 vom: 12. Sept.</subfield><subfield code="w">(DE-627)509758428</subfield><subfield code="w">(DE-600)2228431-X</subfield><subfield code="x">1673-3606</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:12</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11467-018-0827-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">12</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Li, Zhen |
spellingShingle |
Li, Zhen ddc 530 misc single crystal misc magnetoelectric coupling misc substitution Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co |
authorStr |
Li, Zhen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)509758428 |
format |
electronic Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1673-3606 |
topic_title |
530 ASE Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co single crystal (dpeaa)DE-He213 magnetoelectric coupling (dpeaa)DE-He213 substitution (dpeaa)DE-He213 |
topic |
ddc 530 misc single crystal misc magnetoelectric coupling misc substitution |
topic_unstemmed |
ddc 530 misc single crystal misc magnetoelectric coupling misc substitution |
topic_browse |
ddc 530 misc single crystal misc magnetoelectric coupling misc substitution |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of physics in China |
hierarchy_parent_id |
509758428 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
Frontiers of physics in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)509758428 (DE-600)2228431-X |
title |
Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co |
ctrlnum |
(DE-627)SPR019882637 (SPR)s11467-018-0827-6-e |
title_full |
Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co |
author_sort |
Li, Zhen |
journal |
Frontiers of physics in China |
journalStr |
Frontiers of physics in China |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Li, Zhen Cao, Yi-Ming Wang, Yin Yang, Ya Xiang, Mao-Lin Yu, You-Shuang Kang, Bao-Juan Zhang, Jin-Cang Cao, Shi-Xun |
container_volume |
13 |
class |
530 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Zhen |
doi_str_mv |
10.1007/s11467-018-0827-6 |
dewey-full |
530 |
author2-role |
verfasserin |
title_sort |
enhancing the magnetoelectric coupling of $ co_{4} %$ nb_{2} %$ o_{9} $[100] by substituting mg for co |
title_auth |
Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co |
abstract |
Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. |
abstractGer |
Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. |
abstract_unstemmed |
Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 |
container_issue |
5 |
title_short |
Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co |
url |
https://dx.doi.org/10.1007/s11467-018-0827-6 |
remote_bool |
true |
author2 |
Cao, Yi-Ming Wang, Yin Yang, Ya Xiang, Mao-Lin Yu, You-Shuang Kang, Bao-Juan Zhang, Jin-Cang Cao, Shi-Xun |
author2Str |
Cao, Yi-Ming Wang, Yin Yang, Ya Xiang, Mao-Lin Yu, You-Shuang Kang, Bao-Juan Zhang, Jin-Cang Cao, Shi-Xun |
ppnlink |
509758428 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11467-018-0827-6 |
up_date |
2024-07-04T03:12:36.848Z |
_version_ |
1803616525326745600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR019882637</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111072049.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11467-018-0827-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR019882637</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11467-018-0827-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Zhen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Enhancing the magnetoelectric coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $[100] by substituting Mg for Co</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We report experimental studies on enhancing the magnetoelectric (ME) coupling of $ Co_{4} %$ Nb_{2} %$ O_{9} $ by substituting the non-magnetic metal Mg for Co. A series of single crystal $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure $ Co_{4} %$ Nb_{2} %$ O_{9} $ to 19 K and 11 K for $ Co_{3} %$ MgNb_{2} %$ O_{9} $ and $ Co_{2} %$ Mg_{2} %$ Nb_{2} %$ O_{9} $, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient $ α_{ME} $ of $ Co_{3} %$ MgNb_{2} %$ O_{9} $ required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted $ Co_{4–x} %$ Mg_{x} %$ Nb_{2} %$ O_{9} $ (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">single crystal</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">magnetoelectric coupling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">substitution</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Yi-Ming</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Yin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Ya</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xiang, Mao-Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, You-Shuang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kang, Bao-Juan</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jin-Cang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cao, Shi-Xun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of physics in China</subfield><subfield code="d">Berlin : Heidelberg : Springer, 2006</subfield><subfield code="g">13(2018), 5 vom: 12. Sept.</subfield><subfield code="w">(DE-627)509758428</subfield><subfield code="w">(DE-600)2228431-X</subfield><subfield code="x">1673-3606</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:13</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:5</subfield><subfield code="g">day:12</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11467-018-0827-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">13</subfield><subfield code="j">2018</subfield><subfield code="e">5</subfield><subfield code="b">12</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.398695 |