On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface
Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with...
Ausführliche Beschreibung
Autor*in: |
Kirdyashkin, A. A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Inc. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Geotectonics - Moscow : MAIK Nauka/Interperiodica Publ., 1996, 50(2016), 2 vom: März, Seite 209-222 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2016 ; number:2 ; month:03 ; pages:209-222 |
Links: |
---|
DOI / URN: |
10.1134/S0016852116020059 |
---|
Katalog-ID: |
SPR020010206 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR020010206 | ||
003 | DE-627 | ||
005 | 20230330160753.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S0016852116020059 |2 doi | |
035 | |a (DE-627)SPR020010206 | ||
035 | |a (SPR)S0016852116020059-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kirdyashkin, A. A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Inc. 2016 | ||
520 | |a Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. | ||
650 | 4 | |a thermochemical plumes |7 (dpeaa)DE-He213 | |
650 | 4 | |a thermal power |7 (dpeaa)DE-He213 | |
650 | 4 | |a melt |7 (dpeaa)DE-He213 | |
650 | 4 | |a plume conduit |7 (dpeaa)DE-He213 | |
650 | 4 | |a eruption conduit |7 (dpeaa)DE-He213 | |
650 | 4 | |a eruption volume |7 (dpeaa)DE-He213 | |
650 | 4 | |a flow velocity |7 (dpeaa)DE-He213 | |
650 | 4 | |a ascent time |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kirdyashkin, A. G. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Geotectonics |d Moscow : MAIK Nauka/Interperiodica Publ., 1996 |g 50(2016), 2 vom: März, Seite 209-222 |w (DE-627)342320939 |w (DE-600)2071668-0 |x 1556-1976 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2016 |g number:2 |g month:03 |g pages:209-222 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S0016852116020059 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 50 |j 2016 |e 2 |c 03 |h 209-222 |
author_variant |
a a k aa aak a g k ag agk |
---|---|
matchkey_str |
article:15561976:2016----::nhrohmclatelmsihnnemdaehrapwrht |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1134/S0016852116020059 doi (DE-627)SPR020010206 (SPR)S0016852116020059-e DE-627 ger DE-627 rakwb eng Kirdyashkin, A. A. verfasserin aut On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Inc. 2016 Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. thermochemical plumes (dpeaa)DE-He213 thermal power (dpeaa)DE-He213 melt (dpeaa)DE-He213 plume conduit (dpeaa)DE-He213 eruption conduit (dpeaa)DE-He213 eruption volume (dpeaa)DE-He213 flow velocity (dpeaa)DE-He213 ascent time (dpeaa)DE-He213 Kirdyashkin, A. G. aut Enthalten in Geotectonics Moscow : MAIK Nauka/Interperiodica Publ., 1996 50(2016), 2 vom: März, Seite 209-222 (DE-627)342320939 (DE-600)2071668-0 1556-1976 nnns volume:50 year:2016 number:2 month:03 pages:209-222 https://dx.doi.org/10.1134/S0016852116020059 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2016 2 03 209-222 |
spelling |
10.1134/S0016852116020059 doi (DE-627)SPR020010206 (SPR)S0016852116020059-e DE-627 ger DE-627 rakwb eng Kirdyashkin, A. A. verfasserin aut On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Inc. 2016 Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. thermochemical plumes (dpeaa)DE-He213 thermal power (dpeaa)DE-He213 melt (dpeaa)DE-He213 plume conduit (dpeaa)DE-He213 eruption conduit (dpeaa)DE-He213 eruption volume (dpeaa)DE-He213 flow velocity (dpeaa)DE-He213 ascent time (dpeaa)DE-He213 Kirdyashkin, A. G. aut Enthalten in Geotectonics Moscow : MAIK Nauka/Interperiodica Publ., 1996 50(2016), 2 vom: März, Seite 209-222 (DE-627)342320939 (DE-600)2071668-0 1556-1976 nnns volume:50 year:2016 number:2 month:03 pages:209-222 https://dx.doi.org/10.1134/S0016852116020059 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2016 2 03 209-222 |
allfields_unstemmed |
10.1134/S0016852116020059 doi (DE-627)SPR020010206 (SPR)S0016852116020059-e DE-627 ger DE-627 rakwb eng Kirdyashkin, A. A. verfasserin aut On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Inc. 2016 Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. thermochemical plumes (dpeaa)DE-He213 thermal power (dpeaa)DE-He213 melt (dpeaa)DE-He213 plume conduit (dpeaa)DE-He213 eruption conduit (dpeaa)DE-He213 eruption volume (dpeaa)DE-He213 flow velocity (dpeaa)DE-He213 ascent time (dpeaa)DE-He213 Kirdyashkin, A. G. aut Enthalten in Geotectonics Moscow : MAIK Nauka/Interperiodica Publ., 1996 50(2016), 2 vom: März, Seite 209-222 (DE-627)342320939 (DE-600)2071668-0 1556-1976 nnns volume:50 year:2016 number:2 month:03 pages:209-222 https://dx.doi.org/10.1134/S0016852116020059 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2016 2 03 209-222 |
allfieldsGer |
10.1134/S0016852116020059 doi (DE-627)SPR020010206 (SPR)S0016852116020059-e DE-627 ger DE-627 rakwb eng Kirdyashkin, A. A. verfasserin aut On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Inc. 2016 Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. thermochemical plumes (dpeaa)DE-He213 thermal power (dpeaa)DE-He213 melt (dpeaa)DE-He213 plume conduit (dpeaa)DE-He213 eruption conduit (dpeaa)DE-He213 eruption volume (dpeaa)DE-He213 flow velocity (dpeaa)DE-He213 ascent time (dpeaa)DE-He213 Kirdyashkin, A. G. aut Enthalten in Geotectonics Moscow : MAIK Nauka/Interperiodica Publ., 1996 50(2016), 2 vom: März, Seite 209-222 (DE-627)342320939 (DE-600)2071668-0 1556-1976 nnns volume:50 year:2016 number:2 month:03 pages:209-222 https://dx.doi.org/10.1134/S0016852116020059 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2016 2 03 209-222 |
allfieldsSound |
10.1134/S0016852116020059 doi (DE-627)SPR020010206 (SPR)S0016852116020059-e DE-627 ger DE-627 rakwb eng Kirdyashkin, A. A. verfasserin aut On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Inc. 2016 Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. thermochemical plumes (dpeaa)DE-He213 thermal power (dpeaa)DE-He213 melt (dpeaa)DE-He213 plume conduit (dpeaa)DE-He213 eruption conduit (dpeaa)DE-He213 eruption volume (dpeaa)DE-He213 flow velocity (dpeaa)DE-He213 ascent time (dpeaa)DE-He213 Kirdyashkin, A. G. aut Enthalten in Geotectonics Moscow : MAIK Nauka/Interperiodica Publ., 1996 50(2016), 2 vom: März, Seite 209-222 (DE-627)342320939 (DE-600)2071668-0 1556-1976 nnns volume:50 year:2016 number:2 month:03 pages:209-222 https://dx.doi.org/10.1134/S0016852116020059 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 50 2016 2 03 209-222 |
language |
English |
source |
Enthalten in Geotectonics 50(2016), 2 vom: März, Seite 209-222 volume:50 year:2016 number:2 month:03 pages:209-222 |
sourceStr |
Enthalten in Geotectonics 50(2016), 2 vom: März, Seite 209-222 volume:50 year:2016 number:2 month:03 pages:209-222 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
thermochemical plumes thermal power melt plume conduit eruption conduit eruption volume flow velocity ascent time |
isfreeaccess_bool |
false |
container_title |
Geotectonics |
authorswithroles_txt_mv |
Kirdyashkin, A. A. @@aut@@ Kirdyashkin, A. G. @@aut@@ |
publishDateDaySort_date |
2016-03-01T00:00:00Z |
hierarchy_top_id |
342320939 |
id |
SPR020010206 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020010206</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330160753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0016852116020059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020010206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S0016852116020059-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirdyashkin, A. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermochemical plumes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal power</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">melt</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume conduit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eruption conduit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eruption volume</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow velocity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ascent time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirdyashkin, A. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geotectonics</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodica Publ., 1996</subfield><subfield code="g">50(2016), 2 vom: März, Seite 209-222</subfield><subfield code="w">(DE-627)342320939</subfield><subfield code="w">(DE-600)2071668-0</subfield><subfield code="x">1556-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:209-222</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S0016852116020059</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">209-222</subfield></datafield></record></collection>
|
author |
Kirdyashkin, A. A. |
spellingShingle |
Kirdyashkin, A. A. misc thermochemical plumes misc thermal power misc melt misc plume conduit misc eruption conduit misc eruption volume misc flow velocity misc ascent time On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface |
authorStr |
Kirdyashkin, A. A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)342320939 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1556-1976 |
topic_title |
On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface thermochemical plumes (dpeaa)DE-He213 thermal power (dpeaa)DE-He213 melt (dpeaa)DE-He213 plume conduit (dpeaa)DE-He213 eruption conduit (dpeaa)DE-He213 eruption volume (dpeaa)DE-He213 flow velocity (dpeaa)DE-He213 ascent time (dpeaa)DE-He213 |
topic |
misc thermochemical plumes misc thermal power misc melt misc plume conduit misc eruption conduit misc eruption volume misc flow velocity misc ascent time |
topic_unstemmed |
misc thermochemical plumes misc thermal power misc melt misc plume conduit misc eruption conduit misc eruption volume misc flow velocity misc ascent time |
topic_browse |
misc thermochemical plumes misc thermal power misc melt misc plume conduit misc eruption conduit misc eruption volume misc flow velocity misc ascent time |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Geotectonics |
hierarchy_parent_id |
342320939 |
hierarchy_top_title |
Geotectonics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)342320939 (DE-600)2071668-0 |
title |
On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface |
ctrlnum |
(DE-627)SPR020010206 (SPR)S0016852116020059-e |
title_full |
On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface |
author_sort |
Kirdyashkin, A. A. |
journal |
Geotectonics |
journalStr |
Geotectonics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
209 |
author_browse |
Kirdyashkin, A. A. Kirdyashkin, A. G. |
container_volume |
50 |
format_se |
Elektronische Aufsätze |
author-letter |
Kirdyashkin, A. A. |
doi_str_mv |
10.1134/S0016852116020059 |
title_sort |
on thermochemical mantle plumes with an intermediate thermal power that erupt on the earth’s surface |
title_auth |
On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface |
abstract |
Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. © Pleiades Publishing, Inc. 2016 |
abstractGer |
Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. © Pleiades Publishing, Inc. 2016 |
abstract_unstemmed |
Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits. © Pleiades Publishing, Inc. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface |
url |
https://dx.doi.org/10.1134/S0016852116020059 |
remote_bool |
true |
author2 |
Kirdyashkin, A. G. |
author2Str |
Kirdyashkin, A. G. |
ppnlink |
342320939 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S0016852116020059 |
up_date |
2024-07-04T03:38:35.434Z |
_version_ |
1803618159623667712 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020010206</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330160753.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S0016852116020059</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020010206</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S0016852116020059-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kirdyashkin, A. A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On thermochemical mantle plumes with an intermediate thermal power that erupt on the Earth’s surface</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Inc. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The relative plume thermal power Ka = N/N1 is used (N is the thermal power transferred from the plume base to its conduit and N1 is the thermal power transferred from the plume conduit into the surrounding mantle in the steady-state heat conduction regime). Thermochemical mantle plumes with small (Ka < 1.15) and intermediate (1.15 < Ka < 1.9) thermal powers are formed at the core–mantle boundary beneath cratons in the absence of horizontal free-convection mantle flows beneath them, or in the presence of weak horizontal mantle flows. Thermochemical plumes reach the Earth’s surface when their relative thermal power is Ka > 1.15. The thermal and hydrodynamical structure of the plume conduit ascending from the core–mantle interface to the level from which the magmatic melt erupts on the Earth’s surface is presented. The model of two-stage eruption of the melt from the plume conduit to the surface is considered. The critical height of the massif above the plume roof, at which the eruption conduit supplying magmatic melt to the surface forms, is determined. The volume of melt erupting through the eruption conduit to the surface is estimated. The dependence of depth Δx from which the melt is transported to the surface on the plume diameter for a kinematic viscosity of ν = 0.5–2 $ m^{2} $/s is presented. In the case when the value Δx is larger than the depth starting from which diamond is stable (150 km), the melt from the plume conduit can transport diamonds to the Earth’s surface. The melt flow in the eruption conduit is considered as a turbulent flow in a cylindrical duct. The velocity of the melt flow in the eruption conduit and the time for the melt to be transported to the surface from a depth of Δx = 150 km for a kinematic viscosity of the melt in the eruption conduit νv = 0.01–1 $ m^{2} $/s are determined. Tangential stress on the eruption conduit sidewall is estimated in cases of melt flow both in smooth and rough conduits.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermochemical plumes</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thermal power</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">melt</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">plume conduit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eruption conduit</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">eruption volume</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">flow velocity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ascent time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kirdyashkin, A. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Geotectonics</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodica Publ., 1996</subfield><subfield code="g">50(2016), 2 vom: März, Seite 209-222</subfield><subfield code="w">(DE-627)342320939</subfield><subfield code="w">(DE-600)2071668-0</subfield><subfield code="x">1556-1976</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:2</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:209-222</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S0016852116020059</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2016</subfield><subfield code="e">2</subfield><subfield code="c">03</subfield><subfield code="h">209-222</subfield></datafield></record></collection>
|
score |
7.401353 |